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6 - Machine learning Il
From convolution to transformers
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Overview

e Surface reconstruction
e Descriptors and machine learning

e Image based processing
e Geometric deep learning

e Convolutional and Transformer based architectures Today

e Tasks and corresponding architectures } ML course 4
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Evaluation

QCM on the course

- No document
- Mainly course questions
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| - Convolutions on points

A - Convolution formulation



: : valeo.ai
Convolution on images

Convolution on images

Convolution for image processing

hinj= )~ ¥ K:[m] fe[n + m]

fe{l,...,C} me{-M/2,...,.M/2}d

o g
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Convolution on images

Convolution on images

Convolution for image processing

hin]= ) K¢ fi(n)
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Convolution on images

Convolution on images

Convolution for image processing

hinj= ) K/ fr(n)
= s T ol 7

Kernel space Feature space
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Convolution on images

Convolution on images

Convolution for image processing
h[n] =

With A the alignment matrix

Image processing: A = |2
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Convolution for points valeo.al

Convolution for points

Apply the same formula on a small set of points:

hinj= >~ K~ A f(n)
fe{l,. b P

3 Kernel space Feature space
Problem: A is not permutation invariant
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Convolution on points

A must be estimated from the neighborhood N of n:

hin]= ) L(ﬁi A(N)

Kernel space

Feature space
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SplatNet

SplatNet

Estimation of A: Interpolation of the features on a regular grid (barycentric
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Splat COilVé)lVé Slice

Hang Su et al. “SPLATNet: Sparse Lattice Networks for Point Cloud Processing”. In: arXiv preprint arXiv:1802.08275 (2018) 12



KPConv

Estimation of A: Create kernel locations in space, weighted interpolation to all

kernel

location based on distance.

Hugues Thomas et al. “Kpconv: Flexible and
deformable convolution for point clouds”. In: ICCV

2029
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. l
ConvPoint Vaeo

Estimation of A: Create kernel locations in space, weighted interpolation learned
with MLP.
aij = a(yi, X;) = MLP(y; — X;)

Optimization of both MLP weights and kernel point positions.

“Generalizing discrete convolutions for unstructured point clouds”. In: Computer and Graphics 2020
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FKAConv

Estimation of A: Direct estimation of A using a mini-PointNet.

a;; = ai(X;) = MLP;(X;, {Xk}«) ~ PointNet({Xy}«)

valeo
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Neighborhood search

Convolution is a local operation.

e K-nearest neighbors search
e Ball search

valeo
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K-nearest neighbors search

Let g be the support point (center of the neighborhood):
argtop-Kpp{—[IP — dll}
Pros:

e All neighborhoods have the same cardinal
e Relatively fast

Cons:

e Neighborhoods scales vary

valeo
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Ball search

Let g be the support point (center of the neiahborhood):

€ P,s.t.{|p— 22
with r the ball radius. PePstlp-all<r}
Pros:

e All neighborhoods have the same scale
Cons:

e Neighborhoods cardinals (number of points) vary
e Usually slower than K-nn

valeo
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| - Convolutions on points
B - Sampling



Progressive dimension reduction

What is the equivalent of stride for convolution on points ?

= Yen

|P| pts
64 ch.

512 pts
128 ch.

128 pts
256 ch.

T

/ \
/—\
O *
8 pts
1024 ch.
32 pts
512 ch.
Segmentation
head
Classification
N Average pooling head

20



Support point sampling

Q (Support points), points used as
neighborhood centers for the
convolution operation.

Usually Q is a subset of P

:.i. o'.
& e & @

Input points Support points
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Random sampling

Uniform selection of the input points.
Pros:

e simple and fast.
Cons:

e loss of geometric information on area
with low density or extreme points.

Input points

Support points

22



Furthest point sampling

Introduced in PointNet++: iteratively
select the further point from the
previously selected.

valeo
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Furthest point sampling

Introduced in PointNet++: iteratively
select the further point from the
previously selected.

valeo
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Furthest point sampling

Introduced in PointNet++: iteratively
select the further point from the
previously selected.

valeo
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Furthest point sampling

Introduced in PointNet++: iteratively
select the further point from the
previously selected.

valeo
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Furthest point sampling

Introduced in PointNet++: iteratively
select the further point from the
previously selected.

valeo
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Furthest point sampling

Introduced in PointNet++: iteratively
select the further point from the
previously selected.

valeo
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Voxel-grid sampling

Apply a voxel pooling: select a point in
each voxel.

Pros:
e fast
Cons:

e voxel size is extra parameter, may
lead to variable number of points

valeo
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Voxel-grid sampling valeo

Apply a voxel pooling: select a point in

each voxel. ® G
Pros: ®
o fast 3 ® o
Cons: &
e voxel size is extra parameter, may ® ® @
lead to variable number of points
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Voxel-grid sampling

Apply a voxel pooling: select a point in
each voxel.

Pros:
e fast
Cons:

e voxel size is extra parameter, may
lead to variable number of points

valeo
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Voxel-grid sampling

Apply a voxel pooling: select a point in
each voxel.

Pros:
e fast
Cons:

e voxel size is extra parameter, may
lead to variable number of points

valeo
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Attention pooling

Learned attention on the

points for outlier robustness. :
Outlier

s 663(\
g\)cé\\qace

/

Group Shuffle Attention

Gumbel Subset Sampling

Jiancheng Yang et al. “Modeling point clouds with self-attention and gumbel subset sampling”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

2019, pp. 3323-3332

33
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Il - Voxels



3D grid convolution

3D convolution for an grid patch centered on n:

JLCEEDS >

fe{ly.;C} mef—M/2: M2}

f. input features
K: convolution kernel

How to represent the scene as a 3D grid?

K¢ [m] f:[n + m]

valeo
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3D projections (voxels)

Suitable space

Machine learning

3D CNNs
[MS15]

valeo

Rabbit

Daniel Maturana and Sebastian Scherer. “Voxnet: A 3D convolutional neural network for real-time object recognition”. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on. IEEE. 2015, pp. 922-928



valeo.ai

Memory

Suitable space

Voxels
\_ _J —

Point clouds sampled on surfaces are very sparse.
We mostly encode empty voxels!

37
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Memory vs representation power

Il. Voxels

Memory efficience vs information loss
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Are voxels doomed?

Voxels are OK for small scenes:

Shapes:
— 32x32x32 = 32768 voxels

Scenes:

— [100m,100m, 10m], vox 0.05:
800M voxels

While for a lidar point cloud only
~150k voxels are filled (0.02%)

SemanticKITTI

valeo
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Idea? valeo.al

Look at the functioning of the
convolution for dense input

40



Idea? valeo.al

Look at the functioning of the
convolution for dense input

Mimic the behavior only at point
location

— sparse convolution

41



Sparse convolutions

Look at the functioning of the
convolution for dense input

Mimic the behavior only at point
location

— sparse convolution

valeo

OUt = xO W=y T+ x1 Woo + xénwo,l s x_l,nwl,o
Po — T Qo
P, 1 P Wot,4{W-1,0|W-1,1 Q
P3 Wo,-1| Wo [ Wo,1 Qs
P4 Wi 1| W10 | Wi r Qs ]
L~
‘ Ps \_‘_// Qs
Input Weight Output
out in

_x4 W00+.x5 wll

Tang, Haotian, et al. "Torchsparse: Efficient point cloud inference engine." Proceedings of Machine Learning and Systems 4 (2022): 302-315.
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Sparse convolutions

Mapping (Sec 4.4)
Symmetry-Aware Construction

Key | Value | glatp%v t
(coords)| (index) (In, Out, Wgt)
Build Hash Table 11 o | Compute |(Po, ©, Wet4)
; from
2.2 1 Hash-) (Pi‘, , W-1_-1)
P4, 2,4 2 Table | (P, O3, W-1.0)
Input 32 3 7
Soodts bl bl 43 4 (Po, Qo, Wo0)
g Wo.-1 | Woo | Wo.1 (P.| , Wo 0)
q:, (Pl- , Wo Q)
: e T Query Hit | (P, Os, Wo,)
Qo Kernel Offset
Qi (P4, Q4, Wo,0)
Query Possible E
2 input Candidates Inferred (P3, Q1, W1,)
Q3 from —| (P4, Qo, W1,1)
Q4 symmetry
OUtPUt (P‘;v 3 W‘IJ)
Coords |

Gather (Sec 4.3)
Locality-Aware Access

X0
X1
X2
X3
X4

Input
Features

|Gather|

X

Matrix Multiplication (Sec 4.2)

Adaptive Grouping
X0 _ | PSUM1
x3 | % [ Wetet | = Foging
X1 PSUM 3
| [ = [
X3 PSUM 1
-'W-E-d- x W1 ,0 = ---------
* x4 — | PSUMO
xa | %] Watr | = Fpsima
Apply BMM )
-
X0 — | PSUMO
fxa [ ¥ Woo | = s
A x2 PSUM 2
X3 PSUM 3
X4 Apply MM PSUM 4 )

valeo

Scatter-Add (Sec 4.3)
Locality-Aware Access

Scatter

X0
X1
X2
X3
X4

Output
Features

Tang, Haotian, et al. "Torchsparse: Efficient point cloud inference engine." Proceedings of Machine Learning and Systems 4 (2022): 302-315.
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Alternative: sparse convolutions

Use sparse convolution for memory saving: do not code the empty cells.

Minkowski engine (NVidia)
SparseConvNet (Facebook)
Torchsparse

Spconv

Drawback: slower than dense convolution, extensive use of CPUs.

Only available for NVidia hardware

valeo
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1l - Mixers and transformers

A - Mixers
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MLP-Mixer
las:
Image backbone L ;gg
- Patchification | Fully-connected
- Patch encoding (fully connected) T Averlage Pooling

" N xMixer Layer R B

- Global pooling N x (Mixer Layer)

- Classification head | Q Lj Q Q Q Q [? Q Q

zas Per-patch Fully-connected

- B [
/.D/ T T 1T I T
YI EIPT™ //,~D/(¢ ‘#

v
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L1

MLP-Mixer

valeo.ai

Skip-connections

Channels
o Patches
= \ 2 L (MLP1 [
A & = —( MLP 1 }—» /TN
= e g \IA3 —( MLPT }—»
g —> @) —( MLP1 }—p|

Layer Norm

Two sub-blocks:

Spatial Mixing: mixes the patch per channel
Spectral Mixing: mixes the channels per patch

Fully-connected

| |
| |
| |
1 1
1 1
1 GELU 1
| |
I 1
I 1
| |

Fully-connected

48



MLP-Mixer valeo.al

Skip-connections

|
: l Channels l
: = Patches
— = o & —( MLP1 }—[ T —
1 S| & O L (MLP 1 —» /TN
B e A Ty [ =
L= e ‘ O —( MLP1 }—p[ | —
il
B o e e e 1 3 e o e e
Why does it work? L|J L|J L|J Lr' l# u H‘I l‘rl L[J
Patches are always in S Per-patch Fully-connected
the same order . Dl (I N N [ .
fub -0 L. LEDE
Eocid | ol

» Incompatible with point clouds 4o



PointMixer

Neighborhood: X; = {x;}

1. Predict a score vect(_)r
s =[s1,...,8K] s € RE
With

8j = gz<[91(xy');5(pz' = Pj)})

@

Channel
MLP

=

Csop ]

Inter-set

CSor ]

Pj

Pi

{:\7 : query point (p;)
—: query feature (x;)

S8 :pos.enc.layer

g :channel-mixing MLPs
; ] : vector concatenation

fr—

Intra-set

PointMixer

o= Fol

i

Details of PointMixer layer

Choe, Jaesung, et al. "Pointmixer: MIp-mixer for point cloud understanding." European conference on computer vision. Cham: Springer Nature Switzerland, 2022. 50



PointMixer

Neighborhood: &; = {x;}

1. Predict a score vect(_)r
s =[s1,...,8K] s € RE
With
8j = g2<[91(xj); o(pi — Pj)])

2. Use the scores to weight
the features

T = Z softmax(s;) © gs(x;),
JEM,;

@

Channel
MLP

Csop ]

CSor ]

Intra-set

PointMixer

=

Inter-set |,

: query point (p;)

: query feature (x;)

: pos. enc. layer

: channel-mixing MLPs
; | : vector concatenation

Details of PointMixer layer

Choe, Jaesung, et al. "Pointmixer: MIp-mixer for point cloud understanding." European conference on computer vision. Cham: Springer Nature Switzerland, 2022. 51
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PointMixer Vaeo

]
wn| S 2| 4 A -
SEEES EHIEE AEEIEEE
Xllalgllal= 8| [l ~ ~ & 8 s/ 85
S|8|E||2|lsP&31 23 I E R ERE-
= O | = Al = = 7] =
oo B[] | 8| Xl |2l 5MAal=]| &= == s SEEl S =
& T LEIE] B E| 2| eS| 58| 5 E| S S| =
= i P = s
C=64 N/16, E| = § Ra i = = = N/4, c=32
c=128 N/64, B = = = N/16, C=64
C=256 N/256, N/256, N/64, C=128
c=512 c=512 C=256
<\ [eT%] [E1=%] [5T%] [ET%] [=
w2l || 2|all||2ll2|]|2alll |&
| el RN Rl R B B Rl MR ol BN = “airplane”
o 2l o 2 P = O 2 o o
2 =gl |8l=||8|l2|8lZ| |
- - S -
Sl |e|Z| || 2| =2 == |O
N points, N/4, N/16, N/64, N/256, 1
c=32 C=64 c=128 c=256 c=s12 c=s12

(a) PointMixer network for the dense prediction tasks (top) and the classification task (down).

Architecture: U-Net (closer to convolutional architectures than MLP-Mixers)

Choe, Jaesung, et al. "Pointmixer: MIp-mixer for point cloud understanding." European conference on computer vision. Cham: Springer Nature Switzerland, 2022. 52



Wafflelron

MLP

MLP

,' Residual connection
I
|
|
] £ a 3
I -
| = WI block
o
| ©
| [T
.. \_ _J
. .\

Architecture similar to MLP-Mixer:

- Spatial mixing (WI block)
- Channel mixing (MLP)

Gilles Puy et al., “Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation” ICCV 2023

\

1

I

|
MLP i:-p
_:>

I
_|'>

,I

T —————————————————— - —————————— -
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Wafflelron

/ A WI block

1% - FFN with
channelwise
2D convolutions

Batch Norm

Spatial mixing:

- Project on a plane — makes it order invariant

- Apply convolutions
- Un-project to planes

Gilles Puy et al., “Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation” ICCV 2023

valeo
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Wafflelron

WI block

Batch Norm

FFN with
channelwise
2D convolutions

/

Advantage:

Do not rely on SparseConv — can be used on any hardware / any deep learning

framework

Gilles Puy et al., “Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation” ICCV 2023
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B - Transformers
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Transformers

Attention as defined for transformers: Scaled Dot-Product Attention

- Base block of all recent architectures )
(LLMs, VLM, ViTs...) LB

- Order invariant by design SoftMax

Mask (opt.)
— Suitable for point clouds S:ale
t
MatMul
t1

Q KV

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017). 57



PointBert

Contrastive Leanring

(] Input Token @ Masked Token
Pred. Token D CLS Token

{"[26] 7 [269)516]...,

!

{5, 26,1967, 269, 516, ...,

Input Point Cloud
(S - o y  Local Centers t MPM head |
S 1 [ ] DDDDDDD@D
- N e S S S S S S S
|:‘ f—.,_l"-: li i ..o o?..,u '
Y T
Gy o e Transformer Encoder
I"‘&.*\"’*. ")“: =
& 44}3‘;
l‘w A 4 4 4 4 4 4 4
Normiiz OO0 8 -

O O O O — P(I:'iir.:?lil-et [cts] [ Token Masking

Point Patches \DDDD.DGD

Point Embeddings

Transformer architecture

Yu, Xumin, et al. "Point-bert: Pre-training 3d point cloud transformers with masked point modeling." CVPR. 2022.

>
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Transformers

Difficulties

- Attention scales quadratically in memory
(naive implementation)
— Efficient attention, linear depending on
the number or queries / keys / values

- Point clouds are large
— attention matrix resolution may be
under the float precision

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

|

valeo

Scaled Dot-Product Attention

MatMul

t

SoftMax

1

Mask (opt.)

$

Scale

t

MatMul

t1
Q K

A

V
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PointTransformer v1

ft
"RE SRE S ndhcducin |
R - R ! ‘
w [y Softmax AGG | / E)/ /

PTvl V

MLP I—(y —f v

f , |

I ]

AP U4 Uk |
P: Pr f: f € M(p,) l Pooling ]Unpoohng

Zhao, Hengshuang, et al. "Point transformer." Proceedings of the IEEE/CVF international conference on computer vision. 2021.



PointTransformer v2

RESRI .
| w W Softmax Gouped AGG

AP ud Uk JJ o |
Pt DPr ft fr € M(p,)

l Pooling

] Unpooling

valeo

Wu, Xiaoyang, et al. "Point transformer v2: Grouped vector attention and partition-based pooling." Advances in Neural Information Processing Systems 35 (2022): 33330-33342.
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PointTransformer v3

(a) Z-order

U-Net architectures

Neighborhood defined by space filling
curves

Attention on multiple scales

\

g
5| |8
Z -
A
2 |=
-

Point Cloud
Serialization *
Grid Pool
Shuffle Orders *

Embedding

Wu, Xiaoyang, et al. "Point transformer v3: Simpler faster stronger." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. 62
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Conclusion



Conclusion

Efficient architectures

- MinkUNet (for everything)
- PTv3 (flexible, sometimes hard to train)
- Waffelron (outdoor lidar)

Practical sessions

- Wafflelron for part segmentation

valeo
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