

Nuages de Points et Modélisation 3D

4 - Machine learning I

Overview

valeo.ai

Machine learning courses

- Surface reconstruction
- Descriptors and machine learning
- Image based processing
- Geometric deep learning
- Convolutional and Transformer based architectures
- Tasks and corresponding architectures

I - Descriptors and machine learning

Descriptors

I - Descriptors and machine learning

A - Local descriptors

Spin Image

A - Local Descriptors

Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes, A. E. Johnson and M. Hebert, 1999

Spin Image

A - Local Descriptors

Given normal **n** at point **p**

For each point of interest:

- Compute alpha and beta: beta=<n, q-p> alpha = ||(q-p) - beta n||
- Accumulte in the histogram image

Spin Image

A - Local Descriptors

Influence of the accumulator size

- Defines the size of the observed neighborhood
- More or less context

20 pixel image width

10 pixels image width

Spin Image

A - Local Descriptors

Filter on the normal angle

 Retain meaningfull points

180° support angle

90° support angle

60° support angle

Spin Image

A - Local Descriptors

Influence of histogram for descriptor matching

scene spin-image

scene spin-image

scene points accumulated

model spin-image

Spin Image

A - Local Descriptors

Plumbing Sub-Library

Object retrieval in 3D point clouds

Scene

Recognized Models

intensity image

DoN - Difference of Normals

A - Local Descriptors

Observation:

Normals estimated with radius vary with **r** and the smoothness of the surface

 \Rightarrow use this variation a descriptor

DoN - Difference of Normals

A - Local Descriptors

More formally:

$$\boldsymbol{\Delta}_{\mathbf{\hat{n}}}(\mathbf{p}, r_1, r_2) = \frac{\mathbf{\hat{n}}(\mathbf{p}, r_1) - \mathbf{\hat{n}}(\mathbf{p}, r_2)}{2}$$

r1 an r2 are parameters.

More formally, it is an approximation of the **curvature** of the surface at given radius

Curvature

A - Local Descriptors

Curvature:

radius of maximal the sphere that can be fitted on the concave side.

DoN - Difference of Normals

A - Local Descriptors

Practical influence of the radius size

DoN - Difference of Normals

A - Local Descriptors

Usage for unsupervised segmentation:

- Put a threshold on the norm of the DoN
- Apply clustering

Apparte on clustering

Euclidean Cluster Extraction

Clustering

- If already visited, skip
- Else:
 - Initiate cluster
 - \circ add $oldsymbol{p}_i$ to the current queue Q ;

Euclidean Cluster Extraction

Clustering

- If already visited, skip
- Else:
 - Initiate cluster
 - \circ add $oldsymbol{p}_i$ to the current queue Q ;
 - \circ While Q is not empty:
 - Dequeue first element q
 - Add q to cluster C

Euclidean Cluster Extraction

Clustering

- If already visited, skip
- Else:
 - Initiate cluster
 - \circ add $oldsymbol{p}_i$ to the current queue Q ;
 - \circ While Q is not empty:
 - Dequeue first element q
 - Add q to cluster C
 - search for the set neighbors of *q* in a sphere with radius *r*;
 - for every neighbor ,
 - if point not already processed
 - \circ Add to queue Q

Euclidean Cluster Extraction

Clustering

- If already visited, skip
- Else:
 - Initiate cluster
 - \circ add $oldsymbol{p}_i$ to the current queue Q;
 - \circ While Q is not empty:
 - Dequeue first element q
 - Add q to cluster C
 - search for the set neighbors of *q* in a sphere with radius *r*;
 - for every neighbor ,
 - if point not already processed
 - \circ Add to queue Q

Euclidean Cluster Extraction

Clustering

- If already visited, skip
- Else:
 - Initiate cluster
 - \circ add $oldsymbol{p}_i$ to the current queue Q ;
 - \circ While Q is not empty:
 - Dequeue first element q
 - Add q to cluster C
 - search for the set neighbors of *q* in a sphere with radius *r*;
 - for every neighbor ,
 - if point not already processed
 - \circ Add to queue Q

Euclidean Cluster Extraction

Clustering

- If already visited, skip
- Else:
 - Initiate cluster
 - \circ add $oldsymbol{p}_i$ to the current queue Q ;
 - \circ While Q is not empty:
 - Dequeue first element q
 - Add q to cluster C
 - search for the set neighbors of *q* in a sphere with radius *r*;
 - for every neighbor ,
 - if point not already processed
 - \circ Add to queue Q

Euclidean Cluster Extraction

Clustering

- If already visited, skip
- Else:
 - Initiate cluster
 - \circ add $oldsymbol{p}_i$ to the current queue Q ;
 - \circ While Q is not empty:
 - Dequeue first element q
 - Add q to cluster C
 - search for the set neighbors of *q* in a sphere with radius *r*;
 - for every neighbor ,
 - if point not already processed
 - \circ Add to queue Q

Euclidean Cluster Extraction

Clustering

- If already visited, skip
- Else:
 - Initiate cluster
 - \circ add $oldsymbol{p}_i$ to the current queue Q ;
 - \circ While Q is not empty:
 - Dequeue first element q
 - Add q to cluster C
 - search for the set neighbors of *q* in a sphere with radius *r*;
 - for every neighbor ,
 - if point not already processed
 - \circ Add to queue Q

Euclidean Cluster Extraction

Clustering

It is a **region growing** algorithm in *n* dimensions.

Can be further extended:

- Planarity (restimate regression plane)
- Normal filtering
- More generally descriptor filtering

Clustering

Algorithm:

- Build the graph of for neighborhoods of radius r

Clustering

Algorithm:

- Build the graph of for neighborhoods of radius r
- Search the core points: points that have minPts points in their neighborhood (including itself)

minPts=4

Clustering

Algorithm:

- Build the graph of for neighborhoods of radius r
- Search the core points: points that have minPts points in their neighborhood (including itself)
- Reachable point q if there is path (p, $p_1, ..., p_n, q)$ where p_i are core points

minPts=4

Clustering

Algorithm:

- Build the graph of for neighborhoods of radius r
- Search the core points: points that have minPts points in their neighborhood (including itself)
- Reachable point q if there is path $(p, p_1, ..., p_n, q)$ where p_i are core points
- Outliers: isolated points

minPts=4

Clustering

Algorithm:

- Build the graph of for neighborhoods of radius r
- Search the core points: points that have minPts points in their neighborhood (including itself)
- Reachable point q if there is path (p, $p_1, ..., p_n, q)$ where p_i are core points
- Outliers: isolated points

Cluster of p is all the reachable points from p.

minPts=4

Clustering

One of the most used clustering algorithm.

Parameter: *k*, number of cluster

Advantage:

- Simple
- Proof of convergence

Clustering

Initialization: Select random *k* points

Clustering

Initialization: Select random *k* points

Step 1: Assign each point to its closest center

Clustering

Initialization: Select random *k* points

Step 1:

Assign each point to its closest center (Assignation based on Voronoï cells)

Clustering

Initialization: Select random *k* points

Step 1: Assign each point to its closest center

Step 2: Compute new centroids

Clustering

Initialization: Select random *k* points

Step 1: Assign each point to its closest center

Step 2:

Compute new centroids

Iterate until convergence (no point changes cluster)

(

Clustering

Initialization: Select random *k* points

Step 1: Assign each point to its closest center

Step 2: Compute new centroids

Iterate until convergence (no point changes cluster)

 \bigcap

Clustering

Initialization: Select random *k* points

Step 1: Assign each point to its closest center

Step 2:

Compute new centroids

Iterate until convergence (no point changes cluster)

 \bigcap

Clustering

Advantages:

- Simple
- Any dimension
- Only on parameter
- Will converge

Disadvantages

- Convergence may be slow
 → bad initialization
- Need to know k

Mutilple method for estimating the number of clusters, better initialization...

Coming back to descriptors

A - Local Descriptors

A single point \rightarrow poor information (only 3 coordinates)

Local descriptors \rightarrow neighborhood

Previous course Normal estimation using neighborhood (K-nearest neighbors) Construction of the covariance matrix

Hugues Thomas et al. "Semantic classification of 3D point clouds with multiscale spherical neighborhoods". 3DV, 2018

A - Local Descriptors

Covariance matrix (again)

Build the covariance matrix for the neighborhood N of a point q:

• Average: $\bar{x} = \frac{1}{n} \sum_{x \in P} x$

Covariance:

$$n \underset{x \in P}{\underline{\qquad}}$$

$$Cov \in \mathbb{R}^3 \times \mathbb{R}^3$$

$$Cov(i,j) = \frac{1}{n} \sum_{x \in P} (x_i - \bar{x}_i)(x_j - \bar{x}_j) = \frac{1}{n}^{\top} X X$$

Hugues Thomas et al. "Semantic classification of 3D point clouds with multiscale spherical neighborhoods". 3DV, 2018

A - Local Descriptors

Covariance matrix (again)

- Compute covariance matrix
- Diagonalize the Matrix, with P orthonormal (Cov is positive, real, symmetric)

$$Cov = PDP^{-1}$$

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \qquad P = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \qquad \begin{array}{c} \lambda_1 \ge \lambda_2 \ge \lambda_3 \\ e_1, e_2, e_3 \in \mathbb{R}^3 \end{array}$$

A - Local Descriptors

Covariance matrix (again)

- Compute covariance matrix
- Diagonalize the Matrix, with P orthonormal (Cov is positive, real, symmetric)

$$Cov = PDP^{-1}$$

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \qquad P = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \qquad \begin{array}{c} \lambda_1 \ge \lambda_2 \ge \lambda_3 \\ e_1, e_2, e_3 \in \mathbb{R}^3 \end{array}$$

A - Local Descriptors

What are $\lambda_1 \ge \lambda_2 \ge \lambda_3$?

PCA spread

Orthogonal basis $e_1, e_2, e_3 \in \mathbb{R}^3$

 e_3 is the normal

 \Rightarrow there is more information than just the normal

Hugues Thomas et al. "Semantic classification of 3D point clouds with multiscale spherical neighborhoods". 3DV, 2018

	48

valeo.ai

Covariance-based descriptors				
A - Local Descriptor	[°] S			
Sum of eigenvalues	$\sum \lambda_i$			
Omnivariance	$\left(\prod \lambda_i\right)^{\frac{1}{3}}$			

Eigenentropy

Linearity

Planarity

Sphericity

Change of curvature

 $-\sum \lambda_i \ln(\lambda_i)$

 $(\lambda_1 - \lambda_2)/\lambda_1$

 $(\lambda_2 - \lambda_3)/\lambda_1$

 λ_3/λ_1

 $\lambda_3/(\lambda_1+\lambda_2+\lambda_3)$

 $\lambda_2 e_2$

 $\lambda_1 e_1$

A - Local Descriptors

$\sum \lambda_i$	Verticality (x2)	$\left \frac{\pi}{2} - angle(\mathbf{e}_i, \mathbf{e}_z) \right _{i \in (0,2)}$
$\left(\prod \lambda_i\right)^{\frac{1}{3}}$	Absolute moment (x6)	$\left \frac{1}{ \mathcal{N} } \left \sum \langle \mathbf{p} - \mathbf{p}_0, \mathbf{e}_i \rangle^k \right _{i \in (0, 1, 2)} \right $
$-\sum\lambda_i\ln(\lambda_i)$	Vertical moment (x2)	$\frac{1}{ \mathcal{M} } \sum \langle \mathbf{p} - \mathbf{p}_0, \mathbf{e}_z \rangle^k$
$(\lambda_1-\lambda_2)/\lambda_1$	Number of points	$ \mathcal{N} = \mathcal{N} $
$(\lambda_2-\lambda_3)/\lambda_1$		1 5
λ_3/λ_1	Average color (x3)	$\frac{1}{ \mathcal{N} }\sum c$
$\lambda_3/(\lambda_1+\lambda_2+\lambda_3)$	Color variance (x3)	$\frac{1}{ \mathcal{N} - 1} \sum (c - \bar{c})^2$
	$\begin{vmatrix} \sum \lambda_i \\ \left(\prod \lambda_i\right)^{\frac{1}{3}} \\ -\sum \lambda_i \ln(\lambda_i) \\ (\lambda_1 - \lambda_2)/\lambda_1 \\ (\lambda_2 - \lambda_3)/\lambda_1 \\ \lambda_3/\lambda_1 \\ \lambda_3/(\lambda_1 + \lambda_2 + \lambda_3) \end{vmatrix}$	$ \begin{array}{ c c c } & & & & & & & \\ & & & & & \\ & & & & & $

Hugues Thomas et al. "Semantic classification of 3D point clouds with multiscale spherical neighborhoods". 3DV, 2018

Hugues Thomas et al. "Semantic classification of 3D point clouds with multiscale spherical neighborhoods". 3DV, 2018

A - Local Descriptors

Pros

- Fast to compute
- Memory efficient
- Simple classifier
 - (SVM, random forests, MLP...)
- Requires limited amount of data for training

Cons

- No long distance relations
- Limited by the descriptors:
 - The system cannot infer the most suited descriptors

valeo.ai

• Difficulty to create dataset specific descriptors

valeo**.a**i

I - Descriptors and machine learning

B - Global descriptors

GASD - Globally Aligned Spatial Distribution

B - Global descriptors

Descriptor for a complete shape \rightarrow shape classification

Step 1: compute global orientation (PCA)

GASD - Globally Aligned Spatial Distribution

B - Global descriptors

Descriptor for a complete shape \rightarrow shape classification

Step 1: compute global orientation (PCA)

Step 2:

- Normalized histogram of the count of points in each cell
- Average color per cell

GASD - Globally Aligned Spatial Distribution

B - Global descriptors

Descriptor for a complete shape \rightarrow shape classification

Fig. 14. GASD fails to recognize a partially occluded blue detergent bottle.

Fig. 7. Object recognition and pose estimation example: input scene (left), results obtained using ESF (center) and GASD-SI (right).

Global descriptors

B - Global descriptors

In practice:

This approach can be used with any descriptor (use accumulator)

Warning:

- Orientation is a hard problem (missing elements, partial view...)

Current trend would be to use augmentations

- Use multiple rotation
- Masking

valeo**.a**i

I - Descriptors and machine learning

C - Downstream tasks

Object retrieval

C - Downstream tasks

Given a descriptor look for the k-closest in a database

valeo.ai

Classification

C - Downstream tasks

Associate each shape with a label

- Expert decision (by hand)
- ML: SVMs, RandomForest, MLP...

Requires a labeled train set

Classification

C - Downstream tasks

Associate each shape with a label

- Expert decision (by hand)
- ML: SVMs, RandomForest, MLP...

ModelNet 10

Requires a **labeled train set**

valeo.ai

NPM3D

Semantic segmentation

C - Downstream tasks

Associate each point with a label

- Expert decision (by hand)
- ML: SVMs, RandomForest, MLP...

Requires a labeled train set

Point matching

C - Downstream tasks

Match local descriptor from one point cloud to another

Estimate transformation (e.g., RANSAC)

II - Image-based approaches

Idea

Image-based approaches

Image processing is a well studied problem

Idea

Image-based approaches

Idea

Image-based approaches

valeo.ai

Regular grid projections

Image-based approaches

Images are pixels arrays

Implicit neighborhoods Information is in the color and relative position of the pixels

Thanks to this grid structure

Optimized network architectures Fast (hardware optimization) Relatively low memory cost

2D projections

Image-based approaches

2D convolution for an image patch centered on pixel n:

$$\mathbf{h}[n] = \sum_{f \in \{1,...,C\}} \sum_{m \in \{-M/2,...,M/2\}^2} \mathbf{K}_f[m] \, \mathbf{f}_f[n+m]$$

With **f**: input features and **K**: convolution kernel

And new architectures for images:

Vision transformers, MLP Mixers,

Regular grid projections

Image-based approaches

Images are pixels arrays

Implicit neighborhoods Information is in the color and relative position of the pixels

Thanks to this grid structure

Optimized network architectures Fast (hardware optimization) Relatively low memory cost

Point clouds:

Implicit neighborhoods

Information is in the color and relative

position of the pixels

Idea

Find a way to create grid data from point cloud

valeo.ai

valeo.ai

2D projections

Image-based approaches

Generate images representing the scene

- Use a 3D renderer
- Take virtual snapshots of the scene
- Work in the image

Classification pipeline

Image-based approaches

Classification pipeline

Image-based approaches

Semantic segmentation pipeline

Image-based approaches

valeo.ai

SnapNet

Image-based approaches

Reprojection trick

Generate a snapshot of the scene with fake colors corresponding to point ids

- Allow to generate different snapshots (w / wo colors, geometric features, ground truth at training...)
- Easy reprojection of the results on the original points

SnapNet - advantages and limitations

Image-based approaches

Pros

- Benefit from architectures from image processing
- Use of pre-trained models from large image datasets
- Unlimited number of snapshot a given scene (straightforward data augmentation)

Cons

- Good snapshot strategy, which can vary from a dataset to another
- Requires a mesh

Range projection

Image-based approaches

Exploit sensor information to produce images

SalsaNext

Image-based approaches

Use image backbone (U-Net) for semantic segmentation

valeo.ai

RangeViT

Image-based approaches

LiDAR segmentation based on range images & vision transformers (ViTs)

- Unify architectures in LiDAR and image domain
- Leverage image pre-trained ViTs for LiDAR segmentation

Practical session

valeo.ai

Machine learning 1

Practical session

- Implement covariance based local descriptors.
- Train a classifier
- Evaluate on validation point cloud