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Overview

● Surface reconstruction

● Descriptors and machine learning
● Image based processing

● Geometric deep learning

● Convolutional and Transformer based architectures

● Tasks and corresponding architectures
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Machine learning courses
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I - Descriptors and machine learning
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Descriptors

Local 
descriptor

Global 
descriptor

z2

z3

z1

zShape

Registration

Segmentation

Detection

…

Classification

Retrieval

Generation
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I - Descriptors and machine learning
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A - Local descriptors



Spin Image
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A - Local Descriptors

Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes, A. E. Johnson and M. Hebert, 1999
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Spin Image
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A - Local Descriptors

Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes, A. E. Johnson and M. Hebert, 1999

Distance to 
normal axis

Elevation

Histogram

Given normal n at point p

For each point of interest:

● Compute alpha and beta:
beta=<n, q-p>
alpha = ||(q-p) - beta n||

● Accumulte in the histogram image



Spin Image

Influence of the 
accumulator size

● Defines the size 
of the observed 
neighborhood

● More or less 
context
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A - Local Descriptors

Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes, A. E. Johnson and M. Hebert, 1999



Spin Image
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A - Local Descriptors

Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes, A. E. Johnson and M. Hebert, 1999

Filter on the normal 
angle

● Retain 
meaningfull 
points



Spin Image

Influence of 
histogram for 
descriptor 
matching
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A - Local Descriptors

Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes, A. E. Johnson and M. Hebert, 1999



Spin Image

Object retrieval in 3D point clouds

12

A - Local Descriptors

Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes, A. E. Johnson and M. Hebert, 1999



DoN - Difference of Normals

Observation:
Normals estimated with radius vary with r and the smoothness of the surface

⇒ use this variation a descriptor
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A - Local Descriptors

Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds, Yani Ioannou, Babak Taati, Robin Harrap, Michael Greenspan 3DIMPVT



DoN - Difference of Normals

More formally:

r1 an r2 are parameters.

More formally, it is an approximation of the curvature of the surface at given 
radius
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A - Local Descriptors

Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds, Yani Ioannou, Babak Taati, Robin Harrap, Michael Greenspan 3DIMPVT



Curvature

Curvature:

radius of maximal the sphere that can be 
fitted on the concave side.
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A - Local Descriptors



DoN - Difference of Normals

Practical influence of the radius 
size
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A - Local Descriptors

Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds, Yani Ioannou, Babak Taati, Robin Harrap, Michael Greenspan 3DIMPVT



DoN - Difference of Normals

Usage for 
unsupervised 
segmentation:

- Put a threshold 
on the norm of 
the DoN

- Apply 
clustering
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A - Local Descriptors

Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds, Yani Ioannou, Babak Taati, Robin Harrap, Michael Greenspan 3DIMPVT



Apparte on clustering
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Euclidean Cluster Extraction

for every point,             perform the following steps:

● If already visited, skip
● Else:

○ Initiate cluster 
○ add     to the current queue      ;
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Clustering

3D is here: Point Cloud Library (PCL), R. B. Rusu and S. Cousins, 2011
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Euclidean Cluster Extraction
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Clustering

3D is here: Point Cloud Library (PCL), R. B. Rusu and S. Cousins, 2011

It is a region growing algorithm in n 
dimensions.

Can be further extended:

● Planarity (restimate regression 
plane)

● Normal filtering
● More generally descriptor filtering



DBSCAN: Density-based spatial clustering of applications with noise

Algorithm:

- Build the graph of for neighborhoods 
of radius r

28

Clustering

Density-based spatial clustering of applications with noise, M Ester, HP Kriegel, J Sander, X Xu, 1996
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minPts=4
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Density-based spatial clustering of applications with noise, M Ester, HP Kriegel, J Sander, X Xu, 1996

minPts=4



DBSCAN: Density-based spatial clustering of applications with noise

Algorithm:

- Build the graph of for neighborhoods 
of radius r

- Search the core points: points that 
have minPts points in their 
neighborhood (including itself)

- Reachable point q if there is path (p, 
p1,...,pn,q) where pi are core points

- Outliers: isolated points

Cluster of p is all the reachable points 
from p.
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Clustering

Density-based spatial clustering of applications with noise, M Ester, HP Kriegel, J Sander, X Xu, 1996

minPts=4



K-means

One of the most used clustering 
algorithm.

Parameter: k, number of cluster

Advantage: 

● Simple
● Proof of convergence
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K-means

Initialization:
Select random k points
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Clustering



K-means

Initialization:
Select random k points

Step 1:
Assign each point to its closest center
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Clustering



K-means

Initialization:
Select random k points

Step 1:
Assign each point to its closest center
(Assignation based on Voronoï cells)
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K-means

Initialization:
Select random k points

Step 1:
Assign each point to its closest center

Step 2:
Compute new centroids
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K-means

Initialization:
Select random k points

Step 1:
Assign each point to its closest center

Step 2:
Compute new centroids

Iterate until convergence (no point changes 
cluster)
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Clustering



K-means

Advantages:

● Simple
● Any dimension
● Only on parameter
● Will converge

Disadvantages

● Convergence may be slow
→ bad initialization

● Need to know k

Mutilple method for estimating the number of 
clusters, better initialization…
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Coming back to descriptors

42



A single point → poor information (only 3 coordinates)

Local descriptors → neighborhood
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A - Local Descriptors

Covariance-based descriptors

Hugues Thomas et al. “Semantic classification of 3D point clouds with multiscale spherical neighborhoods”. 3DV, 2018

Previous course
Normal estimation using neighborhood (K-nearest neighbors)
Construction of the covariance matrix



Covariance matrix (again)

Build the covariance matrix for the neighborhood N of a point q:

● Average:

Covariance:
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A - Local Descriptors

Covariance-based descriptors

Hugues Thomas et al. “Semantic classification of 3D point clouds with multiscale spherical neighborhoods”. 3DV, 2018



Covariance matrix (again)

● Compute covariance matrix

● Diagonalize the Matrix, with P orthonormal (Cov is positive, real, symmetric)
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A - Local Descriptors

Covariance-based descriptors

Hugues Thomas et al. “Semantic classification of 3D point clouds with multiscale spherical neighborhoods”. 3DV, 2018



Covariance matrix (again)

● Compute covariance matrix

● Diagonalize the Matrix, with P orthonormal (Cov is positive, real, symmetric)
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A - Local Descriptors

Covariance-based descriptors

Hugues Thomas et al. “Semantic classification of 3D point clouds with multiscale spherical neighborhoods”. 3DV, 2018



Covariance-based descriptors

What are                          ?

PCA spread

Orthogonal basis

      is the normal

⇒ there is more information 
than just the normal
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A - Local Descriptors

Hugues Thomas et al. “Semantic classification of 3D point clouds with multiscale spherical neighborhoods”. 3DV, 2018



Covariance-based descriptors
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A - Local Descriptors

Hugues Thomas et al. “Semantic classification of 3D point clouds with multiscale spherical neighborhoods”. 3DV, 2018



Covariance-based descriptors
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A - Local Descriptors

Hugues Thomas et al. “Semantic classification of 3D point clouds with multiscale spherical neighborhoods”. 3DV, 2018
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A - Local Descriptors

Covariance-based descriptors

Hugues Thomas et al. “Semantic classification of 3D point clouds with multiscale spherical neighborhoods”. 3DV, 2018



Pros

● Fast to compute
● Memory efficient
● Simple classifier 

(SVM, random forests, MLP...)
● Requires limited amount of data for 

training
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A - Local Descriptors

Cons

● No long distance relations
● Limited by the descriptors:

○ The system cannot infer the most 
suited descriptors

● Difficulty to create dataset specific 
descriptors

Covariance-based descriptors

Hugues Thomas et al. “Semantic classification of 3D point clouds with multiscale spherical neighborhoods”. 3DV, 2018



I - Descriptors and machine learning
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B - Global descriptors



GASD - Globally Aligned Spatial Distribution

Descriptor for a complete shape
→ shape classification

Step 1: compute global orientation 
(PCA)

B - Global descriptors

53do Monte et al. "An efficient global point cloud descriptor for object recognition and pose estimation."  SIBGRAPI, 2016.



GASD - Globally Aligned Spatial Distribution

Descriptor for a complete shape
→ shape classification

Step 1: compute global orientation 
(PCA)

Step 2: 

- Normalized histogram of the count 
of points in each cell

- Average color per cell

B - Global descriptors

54do Monte et al. "An efficient global point cloud descriptor for object recognition and pose estimation."  SIBGRAPI, 2016.



GASD - Globally Aligned Spatial Distribution

Descriptor for a complete shape
→ shape classification

B - Global descriptors

55do Monte et al. "An efficient global point cloud descriptor for object recognition and pose estimation."  SIBGRAPI, 2016.



Global descriptors

In practice:

This approach can be used with any descriptor (use accumulator)

Warning:

- Orientation is a hard problem (missing elements, partial view…)

Current trend would be to use augmentations

- Use multiple rotation
- Masking
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B - Global descriptors



I - Descriptors and machine learning
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C - Downstream tasks



Object retrieval

Given a descriptor look for the k-closest in a database
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C - Downstream tasks



Classification

Associate each shape with a label

- Expert decision (by hand)
- ML: SVMs, RandomForest, MLP…

Requires a labeled train set
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Classification

Associate each shape with a label

- Expert decision (by hand)
- ML: SVMs, RandomForest, MLP…

Requires a labeled train set
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C - Downstream tasks

ModelNet 10



Semantic segmentation

Associate each point with a label

- Expert decision (by hand)
- ML: SVMs, RandomForest, MLP…

Requires a labeled train set
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C - Downstream tasks

NPM3D



Point matching

Match local descriptor from one point cloud to another

Estimate transformation (e.g., RANSAC)
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C - Downstream tasks



II - Image-based approaches
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Image-based approaches

Idea

Image processing is a well studied problem
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Image-based approaches

Idea

?
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Image-based approaches

Idea



Images are pixels arrays
Implicit neighborhoods
Information is in the color and relative position of 
the pixels

Thanks to this grid structure
Optimized network architectures
Fast (hardware optimization)
Relatively low memory cost
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Image-based approaches

Regular grid projections



2D convolution for an image patch centered on pixel n:

With f: input features and K: convolution kernel

And new architectures for images:

Vision transformers, MLP Mixers, …
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Image-based approaches

2D projections



Images are pixels arrays
Implicit neighborhoods
Information is in the color and relative position of 
the pixels

Thanks to this grid structure
Optimized network architectures
Fast (hardware optimization)
Relatively low memory cost
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Image-based approaches Point clouds:
Implicit neighborhoods
Information is in the color and relative 
position of the pixels

Idea
Find a way to create grid data from 
point cloud

Regular grid projections



Generate images representing the scene

● Use a 3D renderer
● Take virtual snapshots of the scene
● Work in the image
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Image-based approaches

2D projections



Hang Su et al. “Multi-view convolutional neural networks for 3D shape recognition”. In: Proceedings of the IEEE international conference on computer vision. 2015, pp. 945–953 71

Image-based approaches

Classification pipeline



Hang Su et al. “Multi-view convolutional neural networks for 3D shape recognition”. In: Proceedings of the IEEE international conference on computer vision. 2015, pp. 945–953 72

Image-based approaches

Classification pipeline



Alexandre Boulch et al. “SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks”. In: Computers & Graphics (2017) 73

Image-based approaches

Semantic segmentation pipeline



Reprojection trick

Generate a snapshot of the scene with 
fake colors corresponding to point ids

● Allow to generate different 
snapshots (w / wo colors, geometric 
features, ground truth at training...)

● Easy reprojection of the results on 
the original points
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Image-based approaches

SnapNet

Alexandre Boulch et al. “SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks”. In: Computers & Graphics (2017)



Pros

● Benefit from architectures from 
image processing

● Use of pre-trained models from 
large image datasets

● Unlimited number of snapshot a 
given scene (straightforward 
data augmentation)
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Image-based approaches

Cons

● Good snapshot strategy, which can 
vary from a dataset to another

● Requires a mesh

SnapNet - advantages and limitations

Alexandre Boulch et al. “SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks”. In: Computers & Graphics (2017)



Exploit sensor information to produce images
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Image-based approaches

Range projection



Use image backbone (U-Net) for semantic segmentation
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Image-based approaches

Cortinhal, Tiago et al. "Salsanext: Fast, uncertainty-aware semantic segmentation of lidar point clouds." ISVC 2020.

SalsaNext



LiDAR segmentation based on range images & vision transformers (ViTs)

● Unify architectures in LiDAR and image domain
● Leverage image pre-trained ViTs for LiDAR segmentation
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Image-based approaches

Angelika Ando et al., “RangeViT: Towards Vision Transformers for 3D Semantic Segmentation in Autonomous Driving” CVPR 2023

RangeViT



Practical session
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Machine learning 1

- Implement covariance based local descriptors.
- Train a classifier
- Evaluate on validation point cloud

Practical session
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