

Nuages de Points et Modélisation 3D

3 - From local properties to surface reconstruction

Alexandre Boulch (that's me)

CV

- Senior scientist at Valeo in the team valeo.ai.
- Researcher at ONERA
- Thesis at ENPC

Research

- 3D understanding of scenes
 - From point clouds
 - From images

Björn Michele

CV

- PhD student in the valeo.ai team & IRISA OBELIX lab.
- Master in Computer Science

Research

- Domain Adaptation for 3D data
 - Mostly for point clouds

"... as soon as it works, no one calls it AI anymore." Attributed to John McCarthy (mathematician)

"AI is a collective name for problems which we do not yet know how to solve properly by computer" Attributed to Bertram Raphael (computer scientist)

"AI does not exists!" Luc Julia (Scientific Director, Renault Group)

Optimization	Numpy	valeo.ai Points
Segmentation	Machine learning	Neural networks
Surfaces	Geometry	Pytorch
	Scikit-learn	Differentiable optimization
Random forests	Classification	Images

Overview

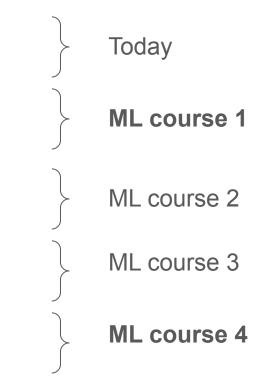
Machine learning courses

- Surface reconstruction
- Descriptors and machine learning
- Image based processing
- Geometric deep learning
- Convolutional and Transformer based architectures
- Tasks and corresponding architectures

Overview - Evaluation

Machine learning courses

- Surface reconstruction
- Descriptors and machine learning
- Image based processing
- Geometric deep learning
- Convolutional and Transformer based architectures
- Tasks and corresponding architectures
- **QCM** + opening session



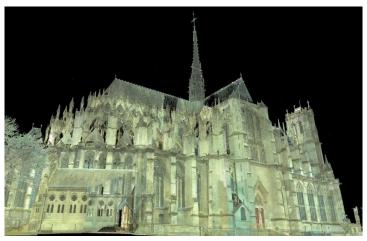
Overview

- Local features
- Surface reconstruction
- Model segmentation

I - From point clouds to surfaces

3D rendering

Patrimony saving



Amiens cathedral

Simulations

Games

Cyberpunk 2077 - Technology preview

10

valeo.ai

3D modelling in archaeology: The application of Structure from Motio methods to the study of the megnecropolis of Panoria

Archeology

Point cloud rendering

Point clouds rendering

I - From point cloud to surfaces

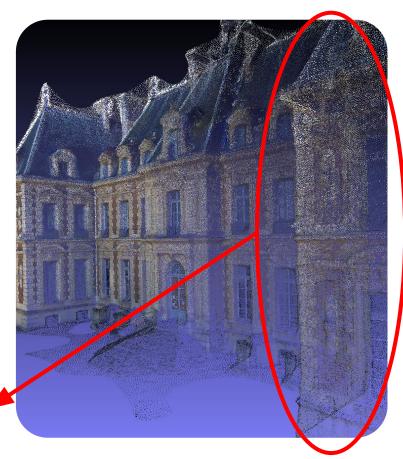
Point clouds are simple:

$$P = \{x \in \mathbb{R}^3\}$$

However:

- Points are independent
- Not easy to render

Wrong point size Wrong density ⇒ see through



Point clouds rendering

I - From point cloud to surfaces

Point clouds are simple:

$$P = \{x \in \mathbb{R}^3\}$$

However:

- Points are independent
- Not easy to render

Higher point size \Rightarrow loss of details

Point clouds

I - From point cloud to surfaces

Point clouds are simple:

$$P = \{x \in \mathbb{R}^3\}$$

However:

- Points are independent
- Not easy to render

⇒ Last course: point rendering is not dead (but it requires a bit of work)

What are point clouds?

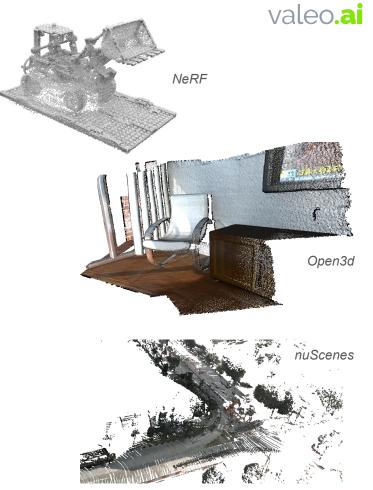
I - From point cloud to surfaces

A point cloud:

• A set of 3D coordinates

$$P = \{p \in \mathbb{R}^3\}$$

- No obvious order (at first sight)
- Sparse sample of surface
- Noisy / outliers
- Variation of size: several orders of magnitude

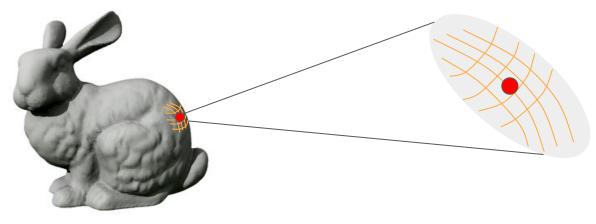


What is a surface

I - From point cloud to surfaces

A surface is a 2-manifold.

Locally, a manifold behave like the euclidean space, i.e, continuous.



The neighborhood is homeomorphic to a 2D-euclidean space (open 2D ball)

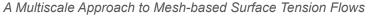
Stanford bunny

Why surfaces?

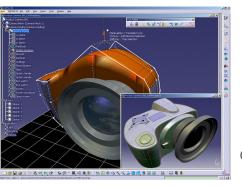
I - From point cloud to surfaces

Surfaces for:

- Simulation
- Animation
- Design
 - • •



Blender



Catia

How to represent a surface

I - From point cloud to surfaces

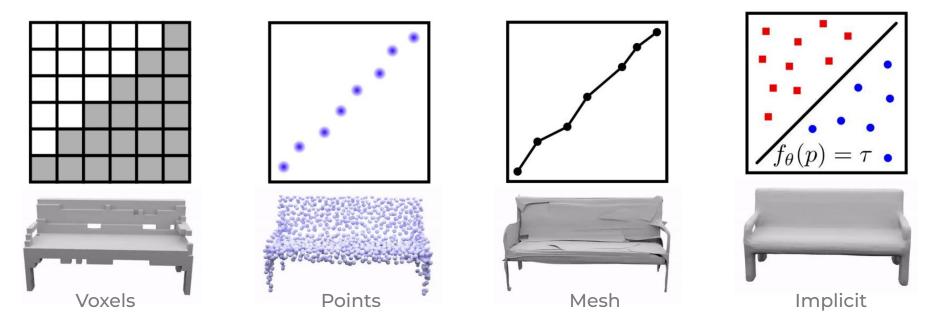
- Points
- Meshes
- Voxels
- Implicit representations
- Parametric shapes (planes, cylinder, spheres)
- Gaussians

• ...

 \rightarrow no unified / perfect representation

How to represent a surface?

I - From point cloud to surfaces



Occupancy Networks: Learning 3D Reconstruction in Function Space

Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019

How to represent a surface?

I - From point cloud to surfaces

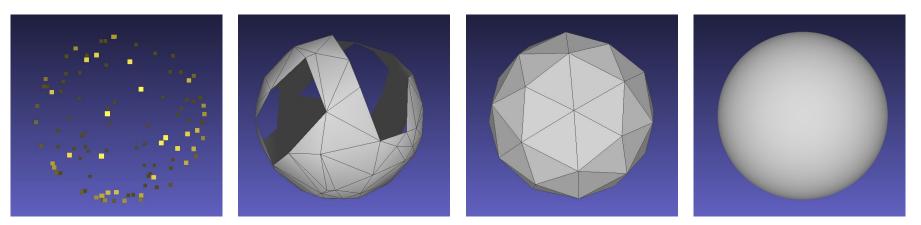
Efficient RANSAC for Point-Cloud Shape Detection

3DGS - Improving Gaussian splatting with Localized points management

What are the properties we want?

I - From point cloud to surfaces

- Sticking to the points?
- With holes?
- Abstract?
- Regular?
- Made of planes? ...



II - Local features

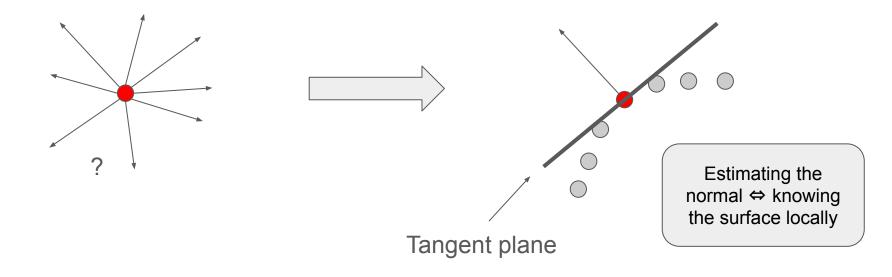
III - Local features

A - Normal estimation

III - Local features

A single point does not contain orientation information

Need to consider a neighborhood around a point



III - Local features

Plane fitting

- The plane is defined by the directions of the largest variance
- The normal corresponds to the direction with lowest variance
- Principal Component Analysis
- The normal is the eigenvector for the smallest eigenvalue.

III - Local features

Plane fitting with PCA

• Compute covariance matrix

Average:
$$\bar{x} = \frac{1}{n} \sum_{x \in P} x$$

Covariance: $Cov \in \mathbb{R}^3 \times \mathbb{R}^3$

$$Cov(i,j) = \frac{1}{n} \sum_{x \in P} (x_i - \bar{x}_i)(x_j - \bar{x}_j) = \frac{1}{n}^{\top} X X$$

III - Local features

Plane fitting with PCA

- Compute covariance matrix
- Diagonalize the Matrix, with P orthonormal (Cov is positive, real, symmetric)

$$Cov = PDP^{-1}$$

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \qquad P = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$$

III - Local features

Plane fitting with PCA

- Compute covariance matrix
- Diagonalize the Matrix
- Find the lowest eigenvalue and eigenvector

$$\lambda_1 \ge \lambda_2 \ge \lambda_3$$

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \qquad P = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$$

III - Local features

Plane fitting with PCA

- Compute covariance matrix
- Diagonalize the Matrix
- Find the lowest eigenvalue and eigenvector

$$\mathbf{n} = \overrightarrow{n} = \overrightarrow{e}_3$$

III - Local features

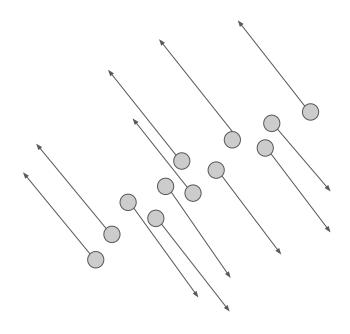
B - Normal orientation

III - Local features

The plane fitting algorithm:

✓ direction

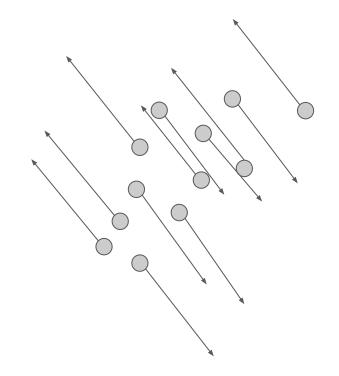
✗ orientation



III - Local features

Normal orientation with minimal spanning tree

Idea: propagate the orientation from one seed

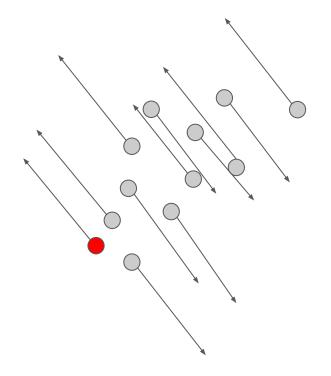


III - Local features

Normal orientation with minimal spanning tree

Idea: propagate the orientation from one seed

1. Select a seed

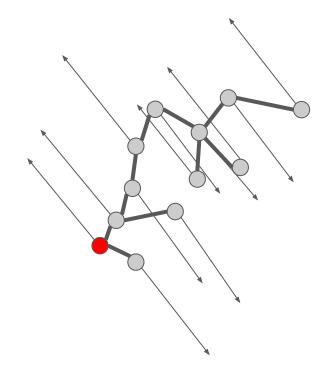


III - Local features

Normal orientation with minimal spanning tree

Idea: propagate the orientation from one seed

- 1. Select a seed
- 2. Build a spanning tree



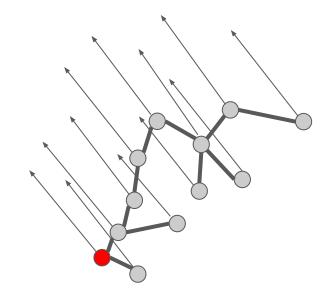
B - Normal orientation

III - Local features

Normal orientation with minimal spanning tree

Idea: propagate the orientation from one seed

- 1. Select a seed
- 2. Build a spanning tree
- Consistently orient the normals (inner product > 0) from parent to child

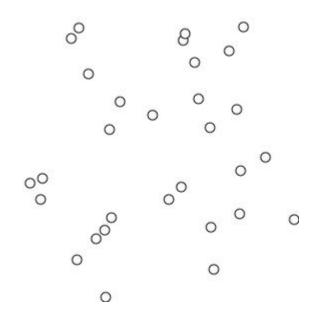


B - Normal orientation

III - Local features

The Kruskal algorithm

- Compute the KNN graph (KDTree)
- Sort the edges of the graph (increasing distances)
- Loop on all edges
 - Add the edge if it does not create a loop



III - Surface reconstruction

III - Surface reconstruction

A - Ball pivoting

Ball pivoting

III - Surface reconstruction

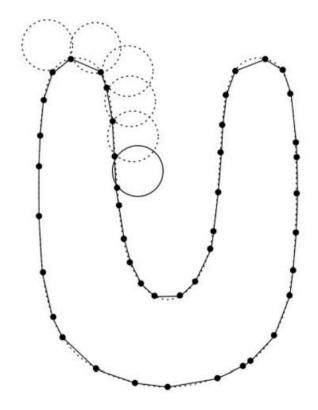
Principles:

Make a sphere "roll" on the points

2D: When the sphere touch 2 points, create an edge

3D: When the sphere touch 3 points, create a facet

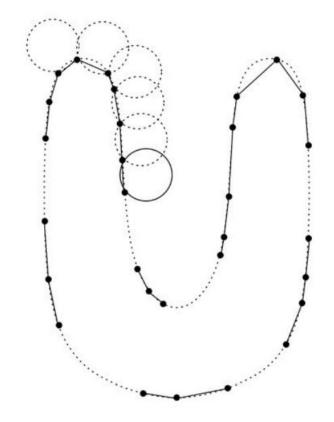
Iterate over the unexplored edges



Ball pivoting

III - Surface reconstruction

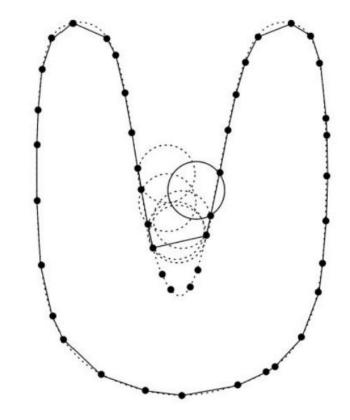
Space larger than sphere diameter creates a hole.



Ball pivoting

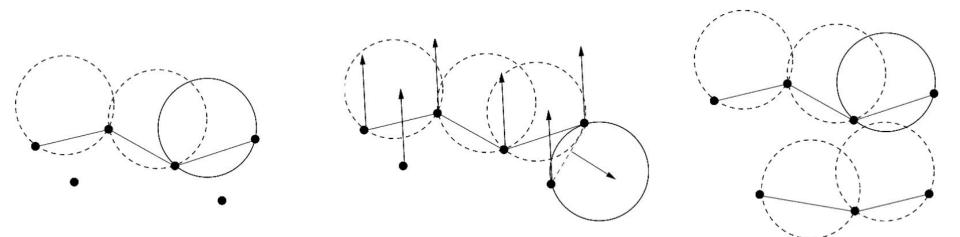
III - Surface reconstruction

Sphere with to big radius leads to a loss of details



Ball pivoting

III - Surface reconstruction



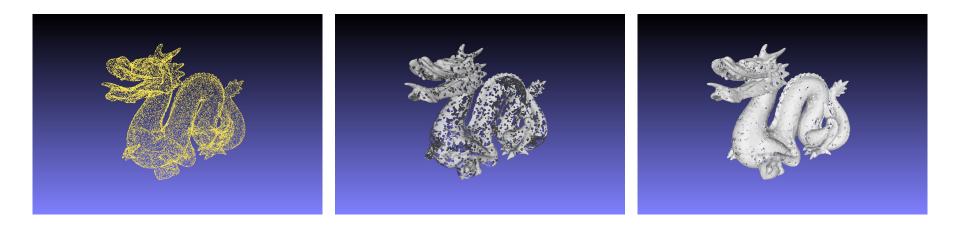
Presence of noise

Filter according to normals

Double side surface

Ball pivoting

III - Surface reconstruction



Increasing sphere radius

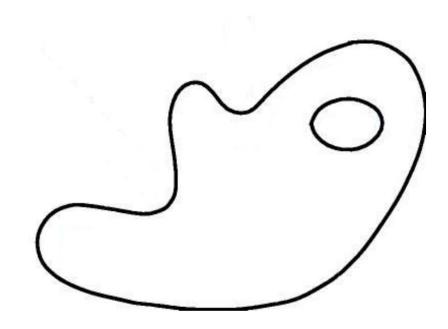
III - Surface reconstruction

B - Delauney reconstruction

Surface

B - Delauney reconstruction

Consider an abstract surface 2D surface (no hole).



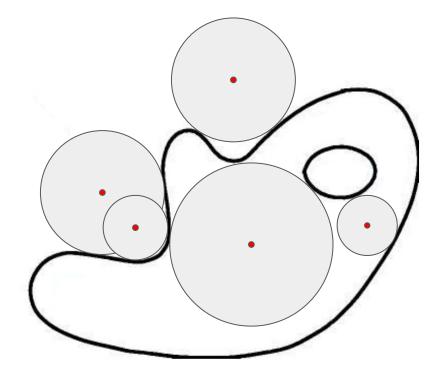
Medial axis

B - Delauney reconstruction

Let's put a sphere such that:

- It touches at least to points on the surface
- It does not include part of the surface

Let's consider all the possible spheres



valeo.ai

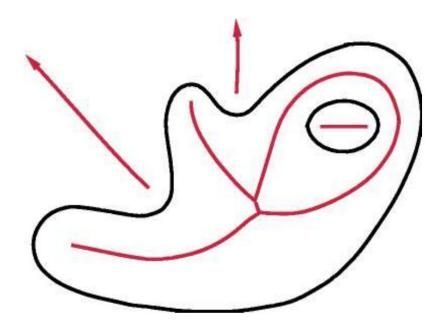
Medial axis

B - Delauney reconstruction

The set of centers of these spheres is the **medial axis**

The medial axis is the dual of the surface.

 \Rightarrow from a medial axis, it is possible to find the surface



Medial axis

B - Delauney reconstruction

The medial axis generalizes to 3D

Voronoï diagram

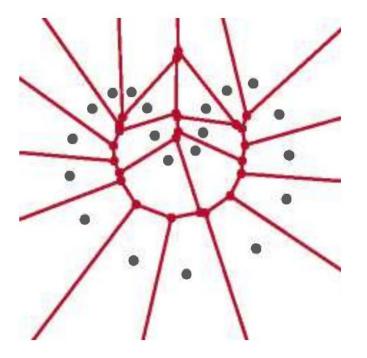
B - Delauney reconstruction

Is there an equivalent of the medial axis for point clouds?

 \Rightarrow yes this the Voronoï diagram

On an edge \rightarrow equal distance to 2 points

On a node \rightarrow equal distance to 3 points

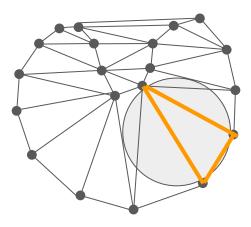


Voronoï diagram

B - Delauney reconstruction

Given 3 points, create a triangle if the sphere encompassing the 3 points is empty.

Iterate over the triplets.

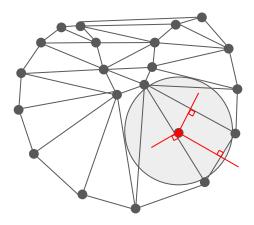


Voronoï diagram

B - Delauney reconstruction

Create the graph.

- nodes \rightarrow the center of the spheres
- Edges → mediator of the edges of the triangles

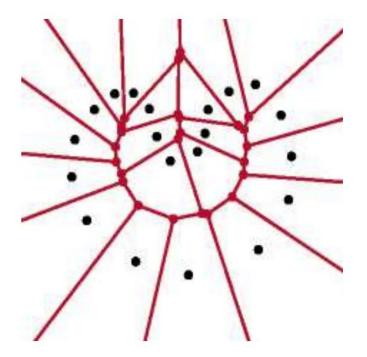


Voronoï diagram

B - Delauney reconstruction

Create the graph.

- nodes \rightarrow the center of the spheres
- Edges → mediator of the edges of the triangles



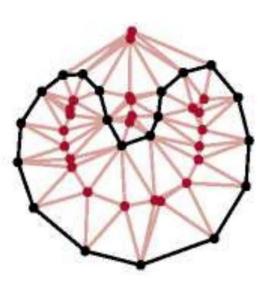
Augmented Delauney triangulation

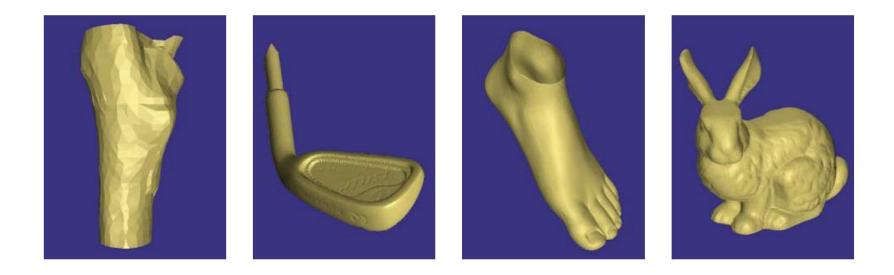
B - Delauney reconstruction

Recompute the Delaunay triangulation with the Voronoï nodes.

Remove edges linked to Voronoï nodes

The remaining is the **crust**.



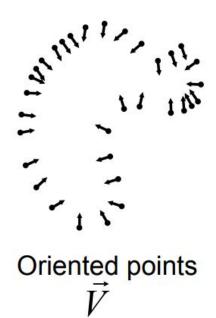


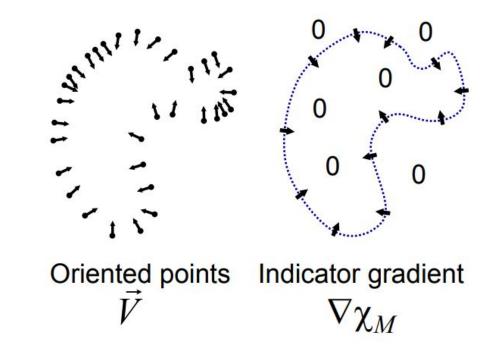
Pros: theoretically grounded, very good results without noise

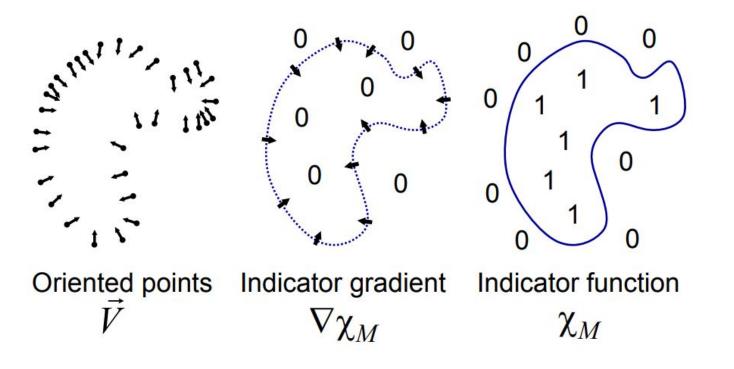
Cons: not smooth, cannot handle noise

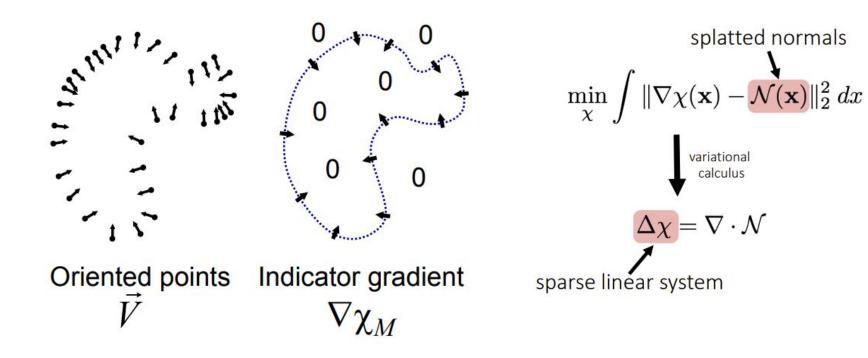
III - Surface reconstruction

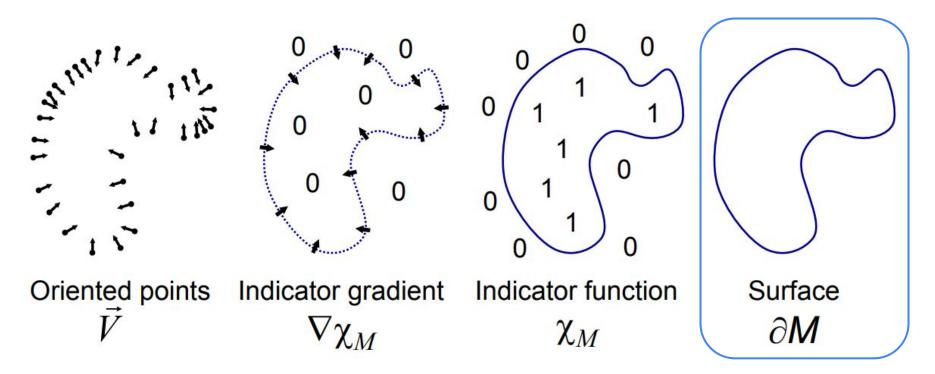
C - Poisson reconstruction







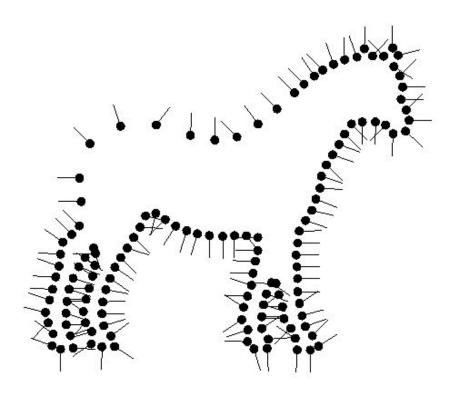




In practice

C - The Poisson reconstruction pipeline

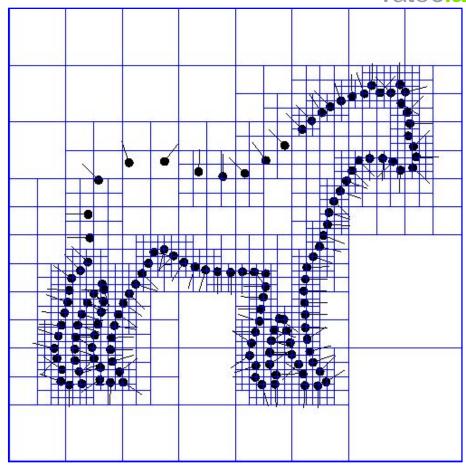
- Set octree
- Compute vector field
- Compute indicator function
- Extract iso-surface



In practice

C - The Poisson reconstruction pipeline

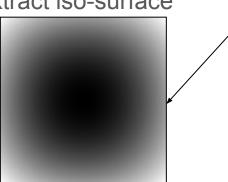
- Set octree
- Compute vector field
- Compute indicator function
- Extract iso-surface

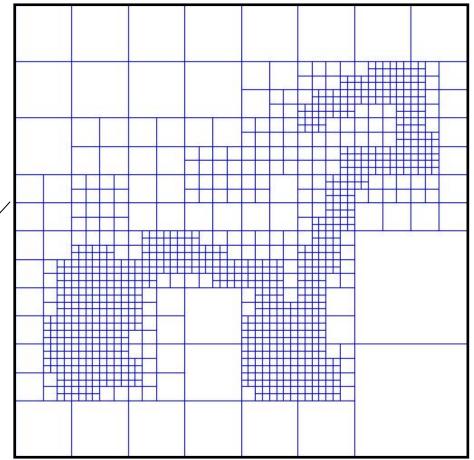


In practice

C - The Poisson reconstruction pipeline

- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface

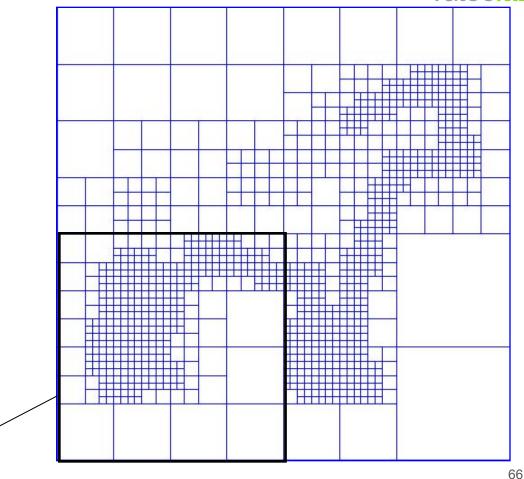




In practice

C - The Poisson reconstruction pipeline

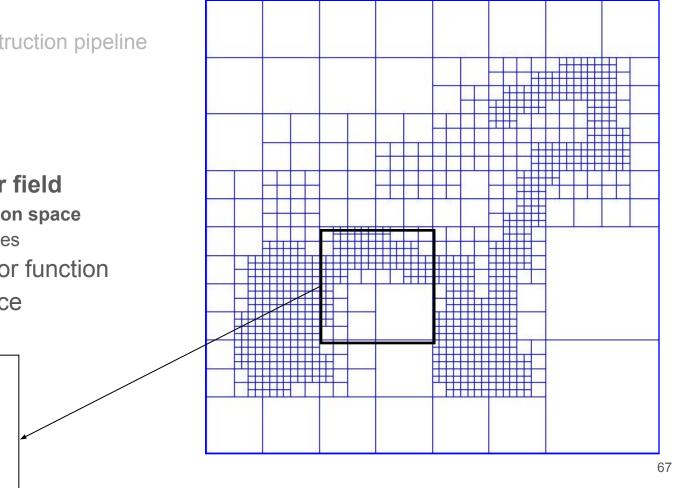
- Set octree
- **Compute vector field**
 - **Define a function space** Ο
 - Splat the samples 0
- Compute indicator function
- Extract iso-surface



In practice

C - The Poisson reconstruction pipeline

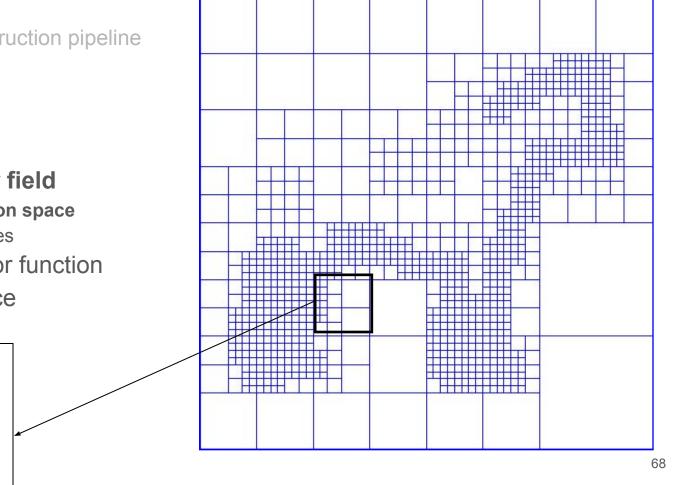
- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface



In practice

C - The Poisson reconstruction pipeline

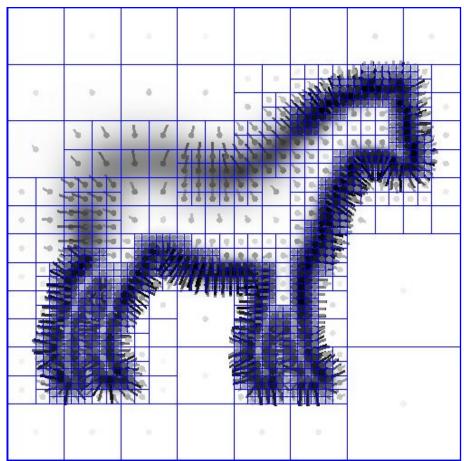
- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface



In practice

C - The Poisson reconstruction pipeline

- Set octree
- Compute vector field
 - Define a function space
 - Splat the samples
- Compute indicator function
- Extract iso-surface



In practice

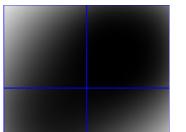
C - The Poisson reconstruction pipeline

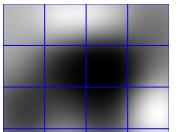
- Set octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson equation
- Extract iso-surface

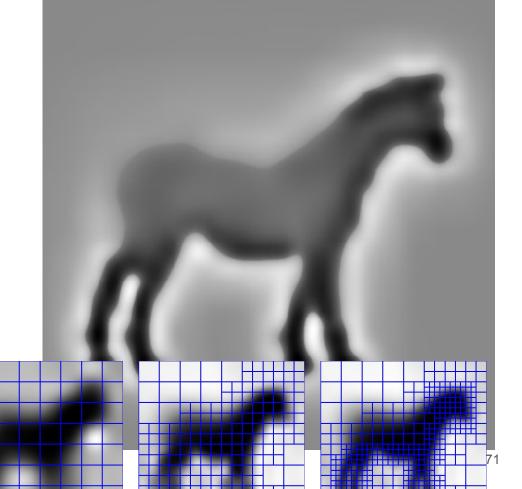
In practice

C - The Poisson reconstruction pipeline

- Set octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson equation
- Extract iso-surface







In practice

C - The Poisson reconstruction pipeline

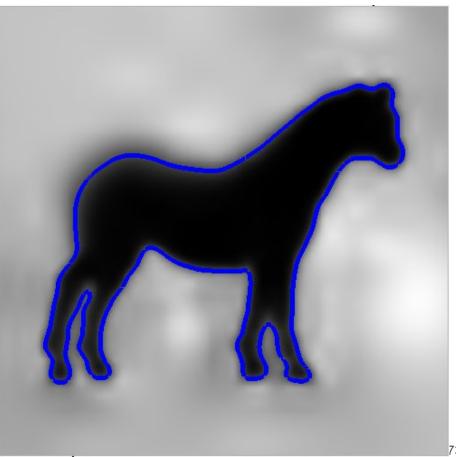
- Set octree
- Compute vector field
- Compute indicator function
 - Compute divergence
 - Solve Poisson equation
- Extract iso-surface

In practice

C - The Poisson reconstruction pipeline

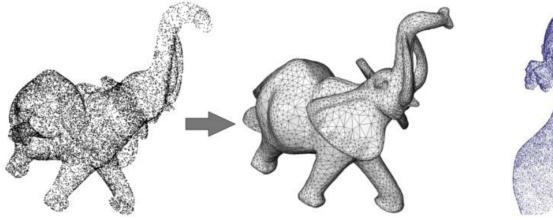
Given the Points:

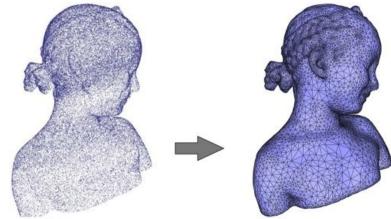
- Set octree
- Compute vector field
- Compute indicator function
- Extract iso-surface



Examples

C - The Poisson reconstruction pipeline





III - Surface reconstruction

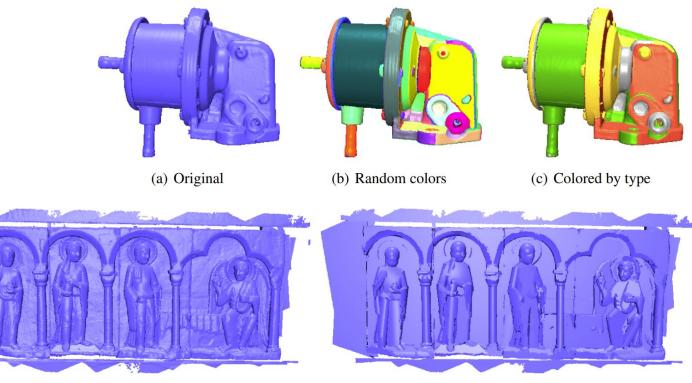
D - RANSAC

Model-based approaches

Fit a model

- Abstraction
- Simplification
- CAD

. .

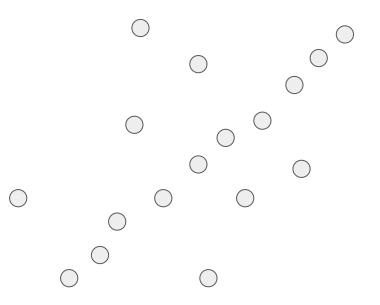


(a) Original

(b) Approximation

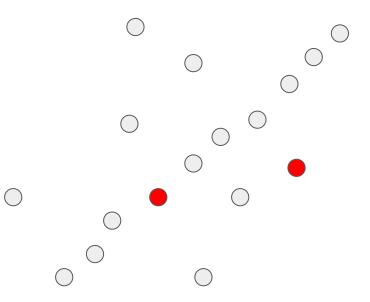
D - RANSAC

- Defining a model
 - Line
 - Defined by to (different) points



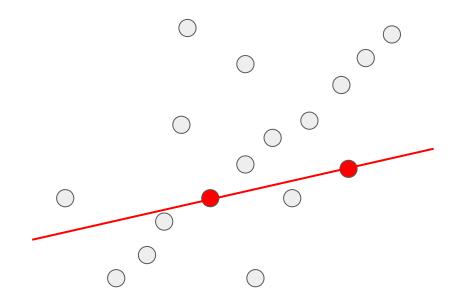
D - RANSAC

- Defining a model
- Hypothesis generation
 - Pick subset of the data



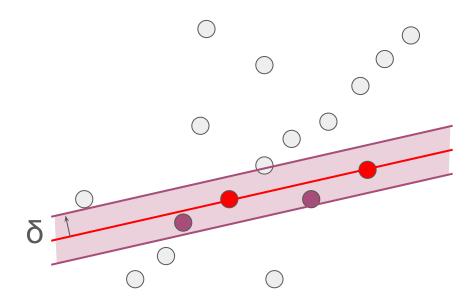
D - RANSAC

- Defining a model
- Hypothesis generation
 - Pick subset of the data
 - Estimate the corresponding model



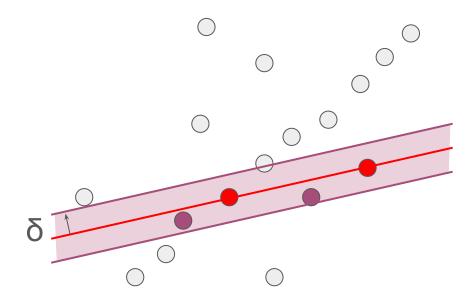
D - RANSAC

- Defining a model
- Hypothesis generation
 - Pick subset of the data
 - Estimate the corresponding model
 - Compute inliers



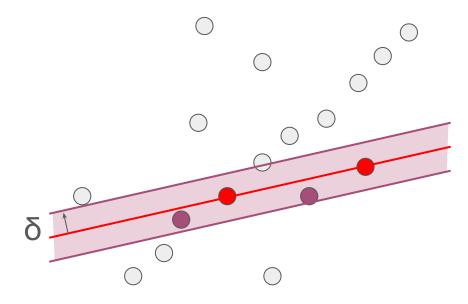
D - RANSAC

- Defining a model
- Hypothesis generation
 - Pick subset of the data
 - Estimate the corresponding model
 - Compute inliers
- Compare to best candidate so far



D - RANSAC

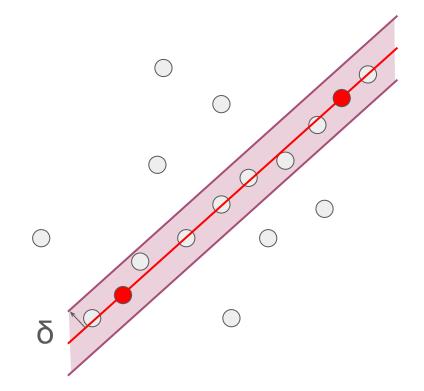
- Defining a model
- Hypothesis generation
 - Pick subset of the data
 - Estimate the corresponding model
 - Compute inliers
- Compare to best candidate so far
- Iterate



Random Sample Consensus

D - RANSAC

- Defining a model
- Hypothesis generation
 - Pick subset of the data
 - Estimate the corresponding model
 - Compute inliers
- Compare to best candidate so far
- Iterate

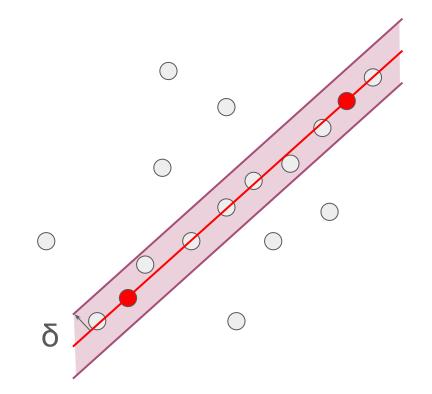


Random Sample Consensus

D - RANSAC

Parameters

- N: size of the point cloud
- k: number of points to generate an hypothesis
- δ: inlier tolerance
- T: number of models to pick in the loop



D - RANSAC

Estimating T

Probability of picking one inlier point :

 $\frac{n = \text{num. inliers}}{N = \text{p.c. size}}$

Probability of picking one inlier hypothesis (k=3 inlier points):

$$P(n) = \binom{n}{k} / \binom{N}{k} \sim \left(\frac{n}{N}\right)^k$$

Probability that the hypothesis is an outlier:

$$1 - P(n)$$

D - RANSAC

Estimating T

Probability that after none of s hypothesis is an inlier

$$(1 - \left(\frac{n}{N}\right)^k)^s$$

Probability that at least one hypothesis in an inlier

$$P(n,s) = 1 - (1 - \left(\frac{n}{N}\right)^k)^s$$

We want T such that the probability of picking an inlier to be more than p_{t}

$$P(n,T) = 1 - (1 - \left(\frac{n}{N}\right)^k)^T > p_t$$

D - RANSAC

Estimating T

We want ${\rm T}$ such that the probability of picking an inlier to be more than ${\rm p}_{\rm r}$

$$P(n,T) = 1 - (1 - \left(\frac{n}{N}\right)^k)^T > p_t$$

Then:

$$T = \frac{\ln(1 - p_t)}{\ln(1 - \left(\frac{n}{N}\right)^k)}$$

 $n \text{ and } p_{_{\!\!\!\!\!\!\!\!}}$ are parameters to be set.

Conclusion and practical session

Surface reconstruction

Conclusion and practical session

Many methods have been developed with various characteristics:

Simple, Smooth, Model-based, Optimal (for given criteria), Robust to noise...

Non-learning methods are usable off-the-shelf.

Learning-based methods... see course 7

Practical session

Conclusion and practical session

Implement a RANSAC plane extractor

https://github.com/aboulch/MSIA_points/blob/main/03_surfaces/MSIA_Points_3_s urfaces.ipynb

https://www.college-de-france.fr/media/jean-daniel-boissonnat/UPL215966848019 1960308_alliez_reconstruction.pdf

https://www.cs.jhu.edu/~misha/MyPapers/SGP06.ppt

https://courses.grainger.illinois.edu/cs598dwh/fa2021/lectures/Lecture%2011%20-%203D%20Registration%20and%20Shape%20Fitting%20-%203DVision.pdf