
Nuages de Points et 
Modélisation 3D

3 - From local properties to surface reconstruction

1



Alexandre Boulch (that’s me)

CV

● Senior scientist at Valeo in the team valeo.ai.
● Researcher at ONERA
● Thesis at ENPC

Research

● 3D understanding of scenes
○ From point clouds
○ From images
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Björn Michele 

CV

● PhD student in the valeo.ai team & IRISA OBELIX lab.
● Master in Computer Science

Research

● Domain Adaptation for 3D data
○ Mostly for point clouds
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“... as soon as it works, no one calls it AI anymore.”
Attributed to John McCarthy (mathematician)

“AI is a collective name for problems which we do not yet know 
how to solve properly by computer”
Attributed to Bertram Raphael (computer scientist)

“AI does not exists!”
Luc Julia (Scientific Director, Renault Group)
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Optimization
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Machine learning

Differentiable 
optimization

Surfaces

Points

Neural networks

Classification

Segmentation

Random forests

Numpy

Pytorch
Geometry

Images

Scikit-learn



Overview

● Surface reconstruction

● Descriptors and machine learning
● Image based processing

● Geometric deep learning

● Convolutional and Transformer based architectures

● Tasks and corresponding architectures
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Machine learning courses

ML course 1

ML course 2

ML course 3

ML course 4

Today



Overview - Evaluation

● Surface reconstruction

● Descriptors and machine learning
● Image based processing

● Geometric deep learning

● Convolutional and Transformer based architectures

● Tasks and corresponding architectures
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Machine learning courses

ML course 1

ML course 2

ML course 3

ML course 4

Today

● QCM + opening session



Overview

● Local features
● Surface reconstruction
● Model segmentation
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I - From point clouds to surfaces
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3D rendering

Archeology
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3D modelling in archaeology: The 
application of Structure from Motion 
methods to the study of the megalithic 
necropolis of Panoria

Patrimony saving

Amiens cathedral

Cyberpunk 2077 - Technology preview

Games

Simulations
CSTB



Point cloud rendering
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OpenMVS



Point clouds rendering
I - From point cloud to surfaces
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Point clouds are simple:

However:

● Points are independent
● Not easy to render

Wrong point size
Wrong density
⇒ see through



Point clouds rendering
I - From point cloud to surfaces
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Point clouds are simple:

However:

● Points are independent
● Not easy to render

Higher point size
⇒ loss of details



Point clouds
I - From point cloud to surfaces
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Point clouds are simple:

However:

● Points are independent
● Not easy to render

⇒ Last course: point rendering is not dead 
(but it requires a bit of work)



Surfaces
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OpenMVS
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http://www.youtube.com/watch?v=hCeP_XUIB5U


What are point clouds?

A point cloud:

● A set of 3D coordinates

● No obvious order (at first sight)
● Sparse sample of surface
● Noisy / outliers
● Variation of size: several orders of magnitude

I - From point cloud to surfaces
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Open3d

nuScenes

NeRF



What is a surface

A surface is a 2-manifold.

Locally, a manifold behave like the euclidean space, i.e, continuous.

I - From point cloud to surfaces
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Stanford bunny

The neighborhood is 
homeomorphic to a 
2D-euclidean space 
(open 2D ball)



Why surfaces?

Surfaces for:

● Simulation
● Animation
● Design
● …

I - From point cloud to surfaces
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Blender

Catia

A Multiscale Approach to Mesh-based Surface Tension Flows



How to represent a surface

● Points
● Meshes
● Voxels
● Implicit representations
● Parametric shapes (planes, cylinder, spheres)
● Gaussians
● …

→ no unified / perfect representation

I - From point cloud to surfaces
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How to represent a surface?
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I - From point cloud to surfaces

Voxels Points Mesh

Occupancy Networks: Learning 3D Reconstruction in Function Space
Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas
Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019

Implicit
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I - From point cloud to surfaces

Efficient RANSAC for 
Point-Cloud Shape 
Detection

3DGS - Improving Gaussian splatting with Localized points management

How to represent a surface?



What are the properties we want?

● Sticking to the points?
● With holes?
● Abstract?
● Regular?
● Made of planes? …

I - From point cloud to surfaces
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II - Local features
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III - Local features
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A - Normal estimation



A - Normal estimation

A single point does not contain 
orientation information
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III - Local features

?

Need to consider a 
neighborhood around a point

Tangent plane

Estimating the 
normal ⇔ knowing 
the surface locally



A - Normal estimation

Plane fitting

● The plane is defined by the 
directions of the largest variance

● The normal corresponds to the 
direction with lowest variance

● Principal Component Analysis
● The normal is the eigenvector for 

the smallest eigenvalue.

27

III - Local features



A - Normal estimation

Plane fitting with PCA

● Compute covariance matrix

Average:

Covariance:
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III - Local features



A - Normal estimation

Plane fitting with PCA

● Compute covariance matrix

● Diagonalize the Matrix, with P orthonormal (Cov is positive, real, symmetric)
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III - Local features



A - Normal estimation

Plane fitting with PCA

● Compute covariance matrix

● Diagonalize the Matrix

● Find the lowest eigenvalue and eigenvector
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III - Local features



A - Normal estimation

Plane fitting with PCA

● Compute covariance matrix

● Diagonalize the Matrix

● Find the lowest eigenvalue and eigenvector
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III - Local features



III - Local features
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B - Normal orientation



B - Normal orientation

The plane fitting algorithm:

✓ direction

✗ orientation
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III - Local features



B - Normal orientation

Normal orientation with minimal 
spanning tree

Idea: propagate the orientation from 
one seed
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III - Local features



B - Normal orientation

Normal orientation with minimal 
spanning tree

Idea: propagate the orientation from 
one seed

1. Select a seed
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III - Local features



B - Normal orientation

Normal orientation with minimal 
spanning tree

Idea: propagate the orientation from 
one seed

1. Select a seed
2. Build a spanning tree
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III - Local features



B - Normal orientation

Normal orientation with minimal 
spanning tree

Idea: propagate the orientation from 
one seed

1. Select a seed
2. Build a spanning tree
3. Consistently orient the normals 

(inner product > 0) from parent to 
child
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III - Local features



B - Normal orientation

The Kruskal algorithm

● Compute the KNN graph (KDTree)
● Sort the edges of the graph (increasing 

distances)
● Loop on all edges

○ Add the edge if it does not create a loop
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III - Local features

Kruskal algorithm, Wikipedia



III - Surface reconstruction
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III - Surface reconstruction

40

A - Ball pivoting



Ball pivoting
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Principles:

Make a sphere “roll” on the points

2D: When the sphere touch 2 points, 
create an edge

3D: When the sphere touch 3 points, 
create a facet

Iterate over the unexplored edges

III - Surface reconstruction



Ball pivoting

Space larger than sphere diameter 
creates a hole.
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III - Surface reconstruction



Ball pivoting

Sphere with to big radius leads to a loss 
of details
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III - Surface reconstruction



Ball pivoting

Presence of noise
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III - Surface reconstruction

Filter according to 
normals

Double side 
surface



Ball pivoting

Increasing sphere radius
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III - Surface reconstruction



III - Surface reconstruction
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B - Delauney reconstruction



Surface
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Consider an abstract surface 2D 
surface (no hole).

B - Delauney reconstruction

A New Voronoi-Based Surface Reconstruction Algorithm, Amenta et al.



Medial axis
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Let’s put a sphere such that:

- It touches at least to points on the 
surface

- It does not include part of the 
surface

Let’s consider all the possible spheres

B - Delauney reconstruction

A New Voronoi-Based Surface Reconstruction Algorithm, Amenta et al.



Medial axis
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The set of centers of these spheres is 
the medial axis

The medial axis is the dual of the 
surface.

⇒ from a medial axis, it is possible to 
find the surface

B - Delauney reconstruction

A New Voronoi-Based Surface Reconstruction Algorithm, Amenta et al.



Medial axis
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The medial axis generalizes to 3D

B - Delauney reconstruction

A New Voronoi-Based Surface Reconstruction Algorithm, Amenta et al.



Voronoï diagram
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Is there an equivalent of the medial axis 
for point clouds?

⇒ yes this the Voronoï diagram

On an edge → equal distance to 2 points

On a node → equal distance to 3 points

B - Delauney reconstruction

A New Voronoi-Based Surface Reconstruction Algorithm, Amenta et al.



Voronoï diagram
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Given 3 points, create a triangle if the 
sphere encompassing the 3 points is 
empty.

Iterate over the triplets.

B - Delauney reconstruction

A New Voronoi-Based Surface Reconstruction Algorithm, Amenta et al.



Voronoï diagram
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Create the graph.

- nodes → the center of the spheres
- Edges → mediator of the edges of 

the triangles

B - Delauney reconstruction

A New Voronoi-Based Surface Reconstruction Algorithm, Amenta et al.



Voronoï diagram

Create the graph.

- nodes → the center of the spheres
- Edges → mediator of the edges of 

the triangles
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B - Delauney reconstruction



Augmented Delauney triangulation

Recompute the Delaunay triangulation 
with the Voronoï nodes.

Remove edges linked to Voronoï nodes

The remaining is the crust.
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B - Delauney reconstruction



Pros: theoretically grounded, very good results without noise

Cons: not smooth, cannot handle noise
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III - Surface reconstruction
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C - Poisson reconstruction



Overview
C - The Poisson reconstruction pipeline
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Kazhdan et al. "Poisson surface reconstruction." SGP, 2006.



Overview
C - The Poisson reconstruction pipeline
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Kazhdan et al. "Poisson surface reconstruction." SGP, 2006.



Overview
C - The Poisson reconstruction pipeline
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Kazhdan et al. "Poisson surface reconstruction." SGP, 2006.



Overview
C - The Poisson reconstruction pipeline
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Kazhdan et al. "Poisson surface reconstruction." SGP, 2006.



Overview
C - The Poisson reconstruction pipeline
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Kazhdan et al. "Poisson surface reconstruction." SGP, 2006.



In practice
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C - The Poisson reconstruction pipeline

Given the Points:

● Set octree
● Compute vector field
● Compute indicator function
● Extract iso-surface



In practice
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C - The Poisson reconstruction pipeline

Given the Points:

● Set octree
● Compute vector field
● Compute indicator function
● Extract iso-surface



In practice
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C - The Poisson reconstruction pipeline

Given the Points:

● Set octree
● Compute vector field

○ Define a function space
○ Splat the samples

● Compute indicator function
● Extract iso-surface



In practice
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C - The Poisson reconstruction pipeline

Given the Points:

● Set octree
● Compute vector field
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○ Splat the samples
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● Extract iso-surface



In practice
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C - The Poisson reconstruction pipeline

Given the Points:
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In practice
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C - The Poisson reconstruction pipeline

Given the Points:

● Set octree
● Compute vector field

○ Define a function space
○ Splat the samples

● Compute indicator function
● Extract iso-surface



In practice

Given the Points:

● Set octree
● Compute vector field

○ Define a function space
○ Splat the samples

● Compute indicator function
● Extract iso-surface
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C - The Poisson reconstruction pipeline



In practice
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C - The Poisson reconstruction pipeline

Given the Points:

● Set octree
● Compute vector field
● Compute indicator function

○ Compute divergence
○ Solve Poisson equation

● Extract iso-surface



In practice

71

C - The Poisson reconstruction pipeline

Given the Points:

● Set octree
● Compute vector field
● Compute indicator function

○ Compute divergence
○ Solve Poisson equation

● Extract iso-surface



In practice
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C - The Poisson reconstruction pipeline

Given the Points:

● Set octree
● Compute vector field
● Compute indicator function

○ Compute divergence
○ Solve Poisson equation

● Extract iso-surface



In practice
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C - The Poisson reconstruction pipeline

Given the Points:

● Set octree
● Compute vector field
● Compute indicator function
● Extract iso-surface



Examples
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C - The Poisson reconstruction pipeline



III - Surface reconstruction
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D - RANSAC



Model-based approaches

76

Fit a model

- Abstraction
- Simplification
- CAD
- …

Efficient RANSAC for Point-Cloud Shape Detection, Schabel et al. 



Random Sample Consensus

Random Sample Concensus

● Defining a model
○ Line
○ Defined by to (different) points

D - RANSAC
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Random Sample Consensus

Random Sample Concensus

● Defining a model
● Hypothesis generation

○ Pick subset of the data

D - RANSAC
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Random Sample Consensus

Random Sample Concensus

● Defining a model
● Hypothesis generation

○ Pick subset of the data
○ Estimate the corresponding model

D - RANSAC
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Random Sample Consensus

Random Sample Concensus

● Defining a model
● Hypothesis generation

○ Pick subset of the data
○ Estimate the corresponding model
○ Compute inliers

D - RANSAC
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δ



Random Sample Consensus

Random Sample Concensus

● Defining a model
● Hypothesis generation

○ Pick subset of the data
○ Estimate the corresponding model
○ Compute inliers

● Compare to best candidate so far

D - RANSAC
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δ



Random Sample Consensus

Random Sample Concensus

● Defining a model
● Hypothesis generation

○ Pick subset of the data
○ Estimate the corresponding model
○ Compute inliers

● Compare to best candidate so far
● Iterate

D - RANSAC
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δ



Random Sample Consensus

Random Sample Concensus

● Defining a model
● Hypothesis generation

○ Pick subset of the data
○ Estimate the corresponding model
○ Compute inliers

● Compare to best candidate so far
● Iterate

D - RANSAC
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δ



Random Sample Consensus

Parameters

● N: size of the point cloud
● k: number of points to generate an 

hypothesis
● δ: inlier tolerance
● T: number of models to pick in the 

loop

D - RANSAC
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δ



Random Sample Consensus

Estimating T

Probability of picking one inlier point :

Probability of picking one inlier hypothesis (k=3 inlier points):

Probability that the hypothesis is an outlier: 
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D - RANSAC



Random Sample Consensus

Estimating T

Probability that after none of s hypothesis is an inlier

Probability that at least one hypothesis in an inlier

We want T such that the probability of picking an inlier to be more than pt
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D - RANSAC



Random Sample Consensus

Estimating T

We want T such that the probability of picking an inlier to be more than pt

Then: 

n and pt  are parameters to be set.
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D - RANSAC



Conclusion and practical session
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Surface reconstruction

Many methods have been developed with various characteristics: 

Simple, Smooth, Model-based, Optimal (for given criteria), Robust to noise…

Non-learning methods are usable off-the-shelf.

Learning-based methods… see course 7

Conclusion and practical session
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Practical session

Implement a RANSAC plane extractor

https://github.com/aboulch/MSIA_points/blob/main/03_surfaces/MSIA_Points_3_s
urfaces.ipynb
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Conclusion and practical session

https://github.com/aboulch/MSIA_points/blob/main/03_surfaces/MSIA_Points_3_surfaces.ipynb
https://github.com/aboulch/MSIA_points/blob/main/03_surfaces/MSIA_Points_3_surfaces.ipynb


https://www.college-de-france.fr/media/jean-daniel-boissonnat/UPL215966848019
1960308_alliez_reconstruction.pdf

https://www.cs.jhu.edu/~misha/MyPapers/SGP06.ppt

https://courses.grainger.illinois.edu/cs598dwh/fa2021/lectures/Lecture%2011%20-
%203D%20Registration%20and%20Shape%20Fitting%20-%203DVision.pdf 
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https://www.college-de-france.fr/media/jean-daniel-boissonnat/UPL2159668480191960308_alliez_reconstruction.pdf
https://www.college-de-france.fr/media/jean-daniel-boissonnat/UPL2159668480191960308_alliez_reconstruction.pdf
https://www.cs.jhu.edu/~misha/MyPapers/SGP06.ppt
https://courses.grainger.illinois.edu/cs598dwh/fa2021/lectures/Lecture%2011%20-%203D%20Registration%20and%20Shape%20Fitting%20-%203DVision.pdf
https://courses.grainger.illinois.edu/cs598dwh/fa2021/lectures/Lecture%2011%20-%203D%20Registration%20and%20Shape%20Fitting%20-%203DVision.pdf

