valeo.ai

1

Unsupervised learning

Alexandre Boulch

www.boulch.eu

IOGS - ATSI

valeo.ai

Introduction

What is unsupervised learning?

Definition

Find underlying structures in unlabeled data.

Motivations

- Most of the data is unlabeled
- Annotations are expensive
- Annotations are slow

What do we do with unsupervised learning?

Dimension reduction

Keep only useful information: easy storage, computation speed up . . .

Clustering

Group data by similarity. Classification (without a guide)

Visualization

Humans do not deal well with n > 3 dimensional space.

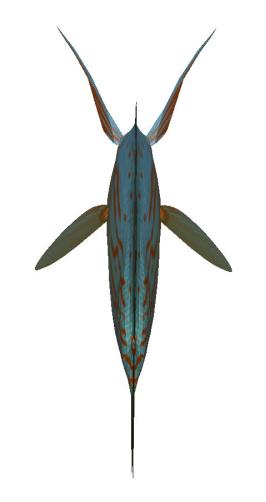
Feature extraction

Pre-train neural network on large data (no label) to be further used on small datasets.

valeo.ai

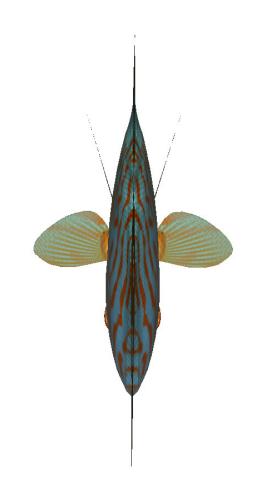
Dimension reduction

- Fishes are 3D objects
- How to create 2D representation?
- Find the best point of view
- Even better: perspective (Giotto, 1420)



Draw a fish

• Fishes are 3D objects



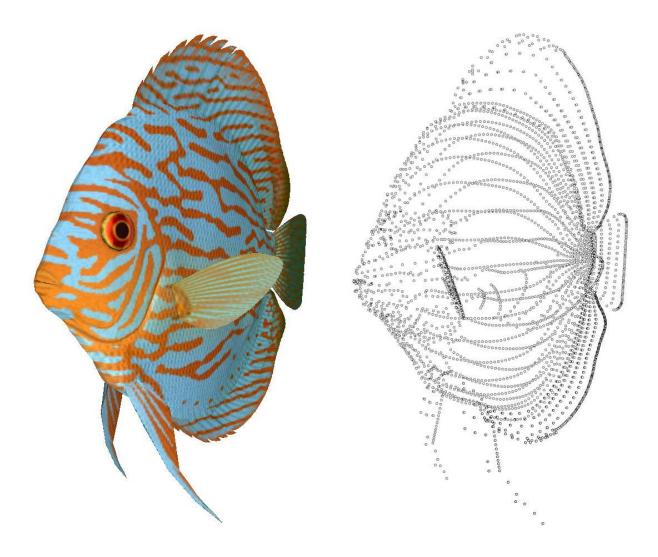
- Fishes are 3D objects
- How to create 2D representation?

- Fishes are 3D objects
- How to create 2D representation?
- Find the best point of view

- Fishes are 3D objects
- How to create 2D representation?
- Find the best point of view
- Even better: perspective (Giotto, 1420)

Principal Component Analysis

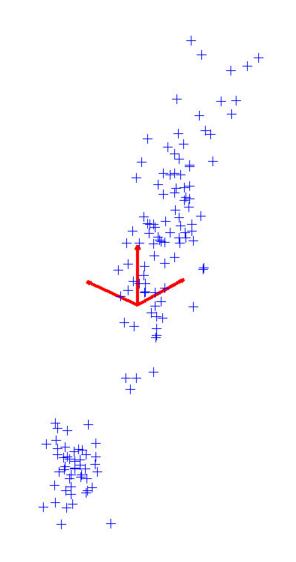
PCA is a prejection method to represent the data by dimension number reduction.



Principal Component Analysis: formalism

Linear algebra

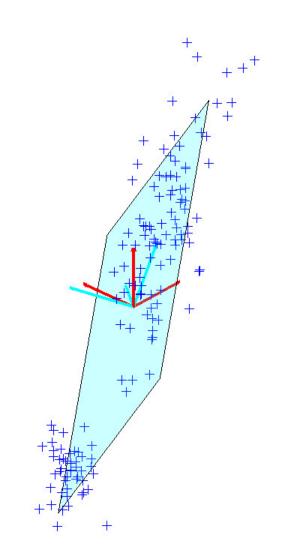
- E a vector space: structure allowing the combination of linear vectors $\mathbf{x} = (x^1, x^2, \dots, x^n)$
- *B* a base: a family of *free* and *generator* vectors



Principal Component Analysis: formalism

Linear algebra

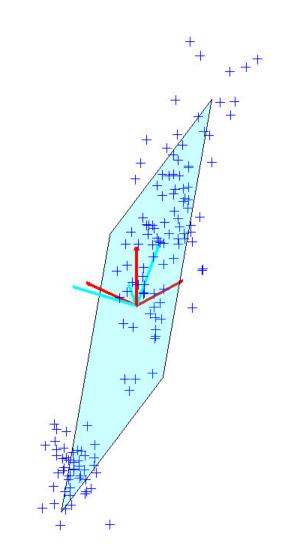
- *E* a vector space: structure allowing the combination of linear vectors $\mathbf{x} = (x^1, x^2, \dots, x^n)$
- *B* a base: a family of *free* and *generator* vectors
- Base change: endomorphism E o E, B o B'



Principal Component Analysis: formalism

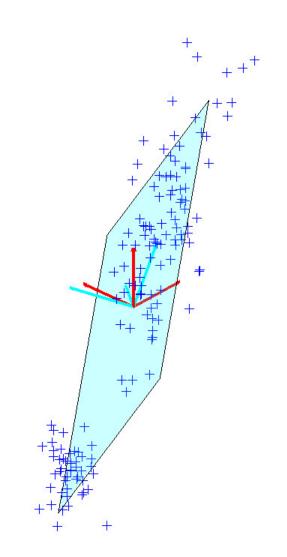
Linear algebra

- E a vector space: structure allowing the combination of linear vectors $\mathbf{x} = (x^1, x^2, \dots, x^n)$
- *B* a base: a family of *free* and *generator* vectors
- Base change: endomorphism E o E, B o B'
- Projection: linear application of E o F, F being a sub-vector space of E



PCA geometric objective

PCA search for the sub vector space (with reduced dimensio) for projection which allow the more accurate projection of the data.



Principal Component Analysis: formalism

Statistics

Let $X \mbox{ and } Y \mbox{ be 2 Random Variables}$

- Average $ar{x} = rac{1}{N}\sum x$
- Variance $\sigma_X^2 = rac{1}{N-1}\sum (x-ar{x})^2$: dispersion measure
- Covariance $\sigma_{X,Y} = rac{1}{N-1} \sum (x-ar{x})(y-ar{y})$: measures de correlation

Let $\mathbf{X} = (X^1, \dots, X^n)$ a random vector:

• Variance-Covariance matrix

$${
m Var}({f X}) = egin{pmatrix} \sigma_{X^1} & \sigma_{X^1X^2} & \dots & \sigma_{X^1X^n} \ \sigma_{X^1,X^2} & \sigma_{X^2}^2 & \dots & \sigma_{X^2X^n} \ dots & dots & \ddots & dots \ \sigma_{X^1,X^n} & \sigma_{X^2,X^n} & \dots & \sigma_{X^n}^2 \end{pmatrix}$$

PCA statistical objective

$$egin{pmatrix} \sigma_{X^1} & \sigma_{X^1X^2} & \dots & \sigma_{X^1X^n} \ \sigma_{X^1,X^2} & \sigma_{X^2}^2 & \dots & \sigma_{X^2X^n} \ dots & dots & \ddots & dots \ \sigma_{X^1,X^n} & \sigma_{X^2,X^n} & \dots & \sigma_{X^n}^2 \end{pmatrix} \longrightarrow egin{pmatrix} \sigma_{X^2} & 0 & \dots & 0 \ O & \sigma_{X^2}^2 & \dots & 0 \ dots & dots & \ddots & dots \ dots & dots & \ddots & dots \ 0 & 0 & \dots & \sigma_{X^n}^2 \end{pmatrix}$$

PCA aims at:

- Dispersion maximization on the first dimensions of the base: $\sigma_{X^i} \geq 0$ and $\sigma_{X^i} \geqslant \sigma_{X^j}, \ \forall i>j$
- Dimensions are not correlated: $\sigma_{X^iX^j}
 ightarrow 0$

Principal Component Analysis: algorithm

Samples $\{\mathbf{x}_k = (x_k^1, \dots, x_k^n), 1 \le k \le p\}$ of a random vector $\mathbf{X} = (X^1, \dots, X^n)$. M matrix of \mathbf{x}_k s vectors.

- 1. Center the sample $orall i\;X^i o X^i ar{X}^i$, s.t., $B = M ar{M}$
- 2. Build the variance-covariance matrix

$$Var(\mathbf{X}) = rac{1}{p-1}^ op BB$$

3. Diagonalize $Var(\mathbf{X})^1$:

$$Var(\mathbf{X}) = P\Delta^ op P$$

4. Sort the eigenvalues in decreasing order (and eigenvectors)

 \implies We obtain the tranfer matrix P et the eigenvalues δ_i .

Principal Component Analysis: properties

• Transfer matrix $P = (\mathbf{u}^1, \dots, \mathbf{u}^n)$ made of the vector of the new base:

T = PM

• Projection matrix $P_{1
ightarrow l} = (\mathbf{u}^1, \dots, \mathbf{u}^l)$ in an optimal sub-vector space:

 $T=P_{1
ightarrow l}M$

Principal Component Analysis: properties

- The eigenvectors $P = (\mathbf{u}^1, \dots, \mathbf{u}^n)$ assotiated with the eigenvalues $\delta_i \propto \sigma_i^2$ sorted in increasing order
- Variance \propto statistical information carried by the dimension. Link to signal theory:
 - The principal components (with a large variance) represent the signal
 - $\circ~$ Low variance components are the noise

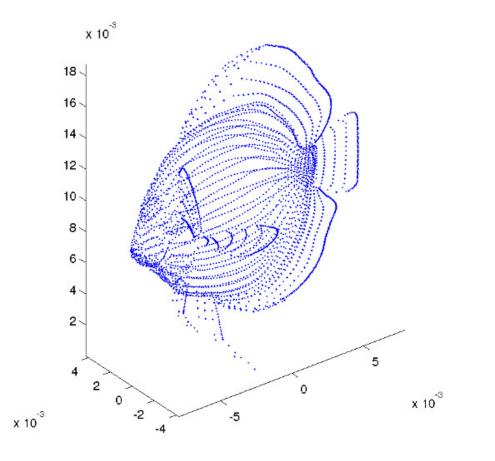
Back to the fishes

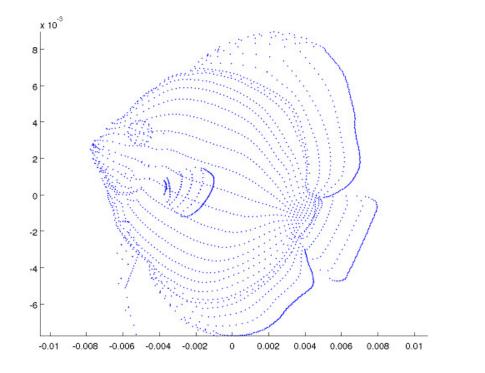
Points of \mathbb{R}^3 on the surface of the Discus Alenquer Variances:

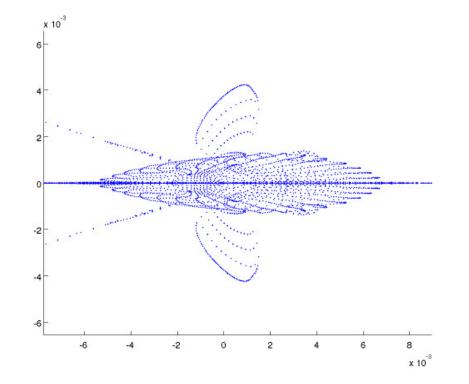
$$\Delta \propto egin{pmatrix} 0.17 & 0 & 0 \ 0 & 0.15 & 0.01 \ 0 & 0 & 0.01 \end{pmatrix}$$

Eigen vector base:

$$P = egin{pmatrix} 0.91 & -0.42 & 0 \ 0 & 0 & 1 \ 0.42 & 0.91 & 0 \end{pmatrix}$$



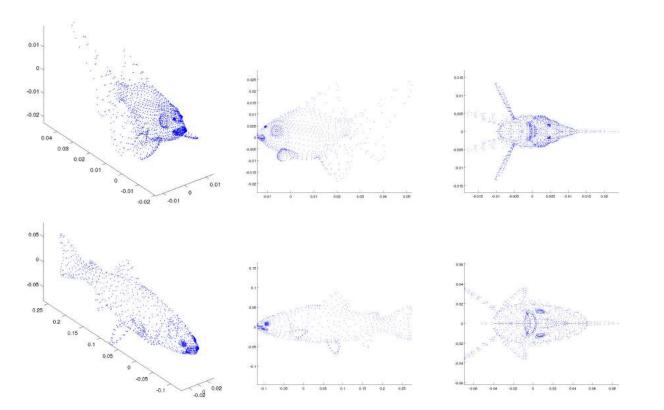




Projection on the two first components (or the two last)

Back to the fishes

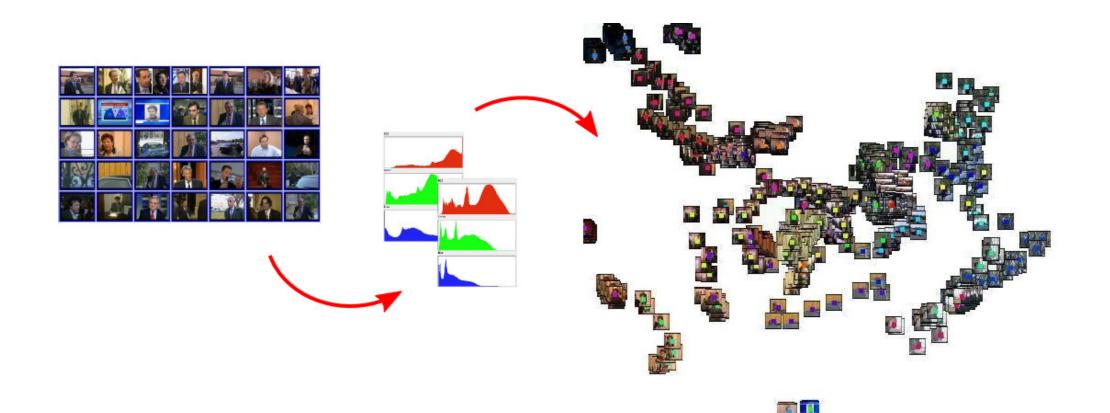
More fishes



3D vs projection on the two first components (canonical representations) and the last.

Video analysis

Video images converted to color histrograms and visualized with the 2 first components of the PCA.



Key points

- High dimension data representation
- Dimension reduction
- Variable decorrelation
- Based on data variance-covariance matrix diagonalization

Usage

- Data preprocessing for data analysis (see the first classes)
- Visualization

valeo.ai

Clustering

Clustering

Definition

- Find categories for close/similar objects
- unsupervised classification of the unlabeled data $\{x_i | i \in \{1, \dots N\}\}$ in \mathbb{R}^n

Objectives

- Group similar data, requires a notion of distance
- Categorization

K-means

- Let K be the cluster number
- A cluster (indexed by j) is a group of points
- Let $u_{ji}in\{0,1\}$ define if x_i belongs to cluster j
- Let $B = \{eta_j | j \in \{1 \dots K\}\}$ be the cluster prototypes (caracterization of a prototype)

K-means

Algorithm minimizes:

$$J_{B,U} = \sum_{j=1}^K \sum_{i=1}^N u_{ji} \, d^2(x_i,eta_j)$$

valeo.ai

K-means

Algorithm

Initilize β_j s, and iterate:

- Assign each x_j to the closest β_j
- Recompute the β_j s according to:

$$eta_j = rac{\sum_{i=1}^N u_{ji} \, x_i}{\sum_{i=1}^N u_{ji}}$$

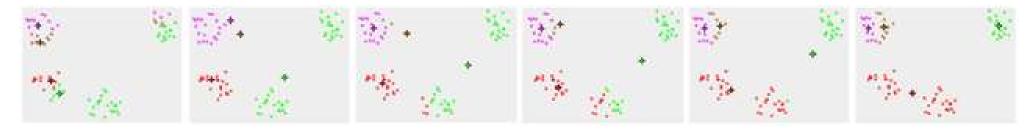
(average location of the group)

valeo.ai

K-means

Properties

- $J_{B,U}$ decreases at each iteration
- There is a fixed number of cluster, so the algorithm **converges**
- But the solution may not be optimal (local minimum)



Initialization

- Initialization is important
- E.g., chose the initial eta_j among the data x_i

K-means

Statistical variant

- Parameters of Gaussian Mixture Model (GMM) estimated by the Expectation-Maximization algorithm.
- x_i is the realisation of a random vector, modeled with a Gaussian mixture:

$$p(x_i) = \sum_1^K p(x_i|k) P(K)$$

- $ullet \ d(x_i,\mu_k) o p(x_i|k) \propto \exp(-||x_i-\mu_k||^2/2\sigma_k^2)$
- Estimate: $orall k, P(k), \mu_k, \sigma_k$

K-means

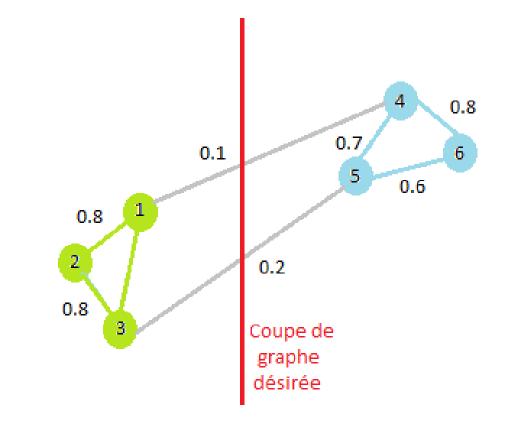
Variants and tricks

- Fuzzy C-means: $u_{ji} \in [0,1]$, a point can belong to several clusters
- Different distance: Mahalanobis distance (FCM), complete covariance matrix (GMM)
- Outliers: if $orall k d(x_i, \mu_k)$ to high, $x_i o$ Noise category.
- Criteria for K estimation
- μ_k estimation: uniformly spread among the data

Clustering: other approaches

Partitionnement spectral:

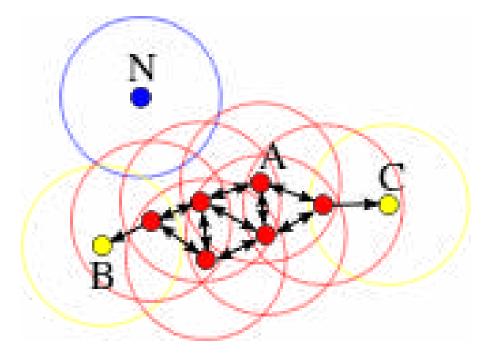
- Similarity matrix,
- Dimension reduction (first eigen vectors)
- K-means
- \implies complex objects, non vectors



Clustering: other approaches

DBSCAN

- Data partionning in categories of MinPts points in a radius∈
- Going through the data step by step to add in a category
- \implies Automatic estimation of the number of categories, \implies deal with outliers



valeo.ai

Self-supervised learning

Overview

- Principles
- Image-based transformations
- Contrastive approaches
- SimCLR

Self-supervised learning

Objective

Create a good **features** for a **downstream task**.

Pre-training of the network

Create a **pretext task** to train the network on. The labels for task a generated automatically.

Downstream task

This the real final objective. It could be classification, regression... It is trained in a supervised manner.

Image-based transformation

Key idea

To predict the transformation of an image, you must \textit{understand} what is in the image.



Image-based transformation: rotation

Transformation

Random rotation of the image. Four classes: 0° , 90° , 180° , 270° . Simple classification problem.

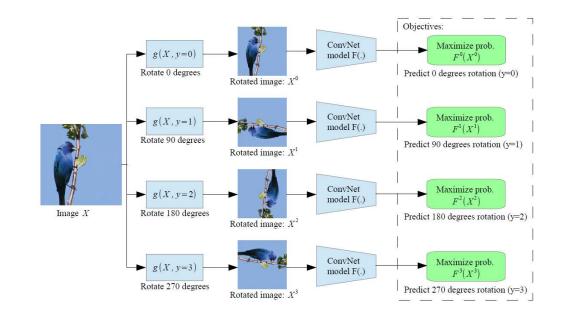


Image-based transformation: rotation

Transformation

Random rotation of the image. Four classes: 0° , 90° , 180° , 270° . Simple classification problem.

Semi-supervised learning

Pre-training: all data (no label)

Target: part of the data with labels

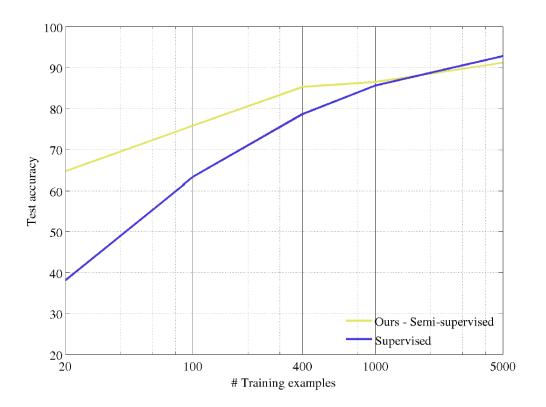


Image-based transformation: rotation

Transformation

Random rotation of the image. Four classes: 0° , 90° , 180° , 270° . Simple classification problem.

Semi-supervised learning

Pre-training: all data (no label)

Target: part of the data with labels

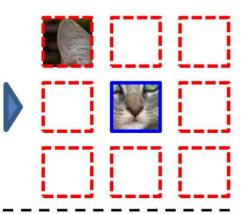
Trained layers	Classification (%mAP)		Detection (%mAP)	Segmentation (%mIoU)
	fc6-8	all	all	all
ImageNet labels	78.9	79.9	56.8	48.0
Random	1	53.3	43.4	19.8
Random rescaled Krähenbühl et al. (2015)	39.2	56.6	45.6	32.6
Egomotion (Agrawal et al., 2015)	31.0	54.2	43.9	
Context Encoders (Pathak et al., 2016b)	34.6	56.5	44.5	29.7
Tracking (Wang & Gupta, 2015)	55.6	63.1	47.4	
Context (Doersch et al., 2015)	55.1	65.3	51.1	
Colorization (Zhang et al., 2016a)	61.5	65.6	46.9	35.6
BIGAN (Donahue et al., 2016)	52.3	60.1	46.9	34.9
Jigsaw Puzzles (Noroozi & Favaro, 2016)	-	67.6	53.2	37.6
NAT (Bojanowski & Joulin, 2017)	56.7	65.3	49.4	
Split-Brain (Zhang et al., 2016b)	63.0	67.1	46.7	36.0
ColorProxy (Larsson et al., 2017)		65.9		38.4
Counting (Noroozi et al.) 2017)	-	67.7	51.4	36.6
(Ours) RotNet	70.87	72.97	54.4	39.1

Image-based transformation: relative position

Transformation

Create a pair of patch, find their relative position. To solve problem, you need to understand the object.

Example:



Question 1:

Question 2:

Image-based transformation: relative position

Transformation

Create a pair of patch, find their relative position. To solve problem, you need to understand the object.

Problem

Classification with 8 classes

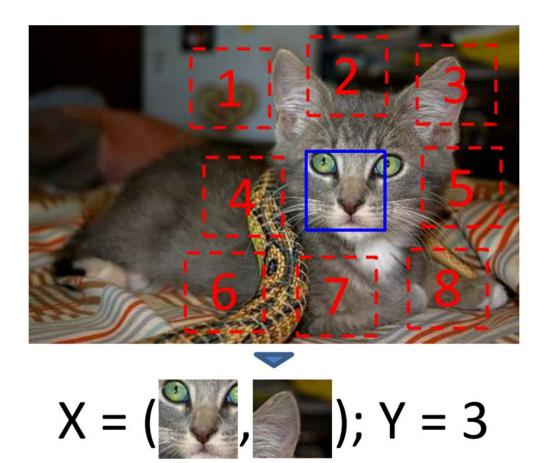


Image-based transformation: relative position

Transformation

Create a pair of patch, find their relative position. To solve problem, you need to understand the object.

Problem

Classification with 8 classes

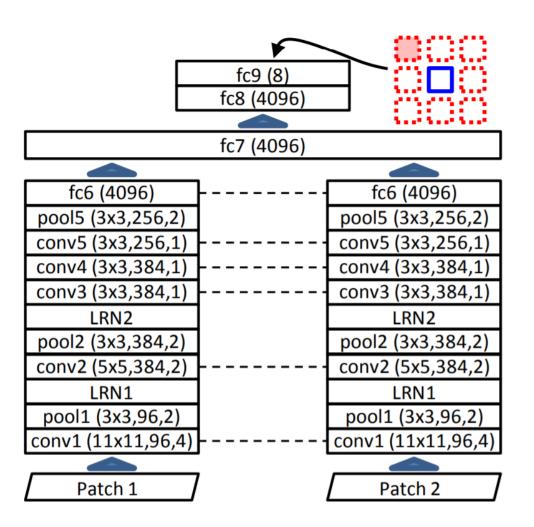


Image-based transformation: jigsaw puzzle}

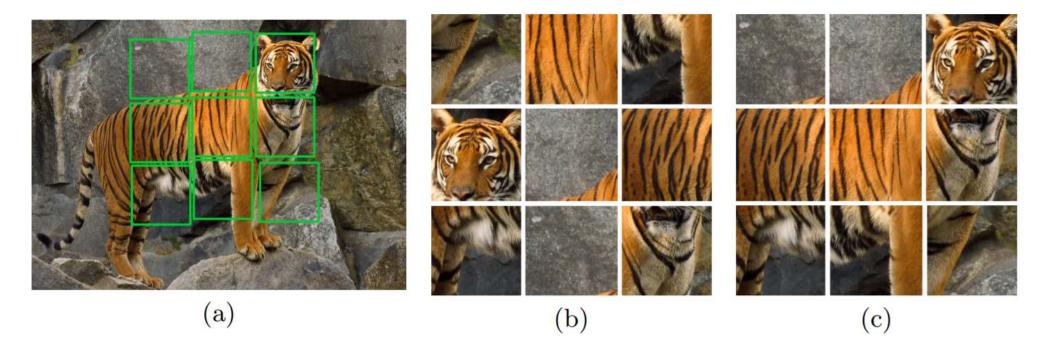
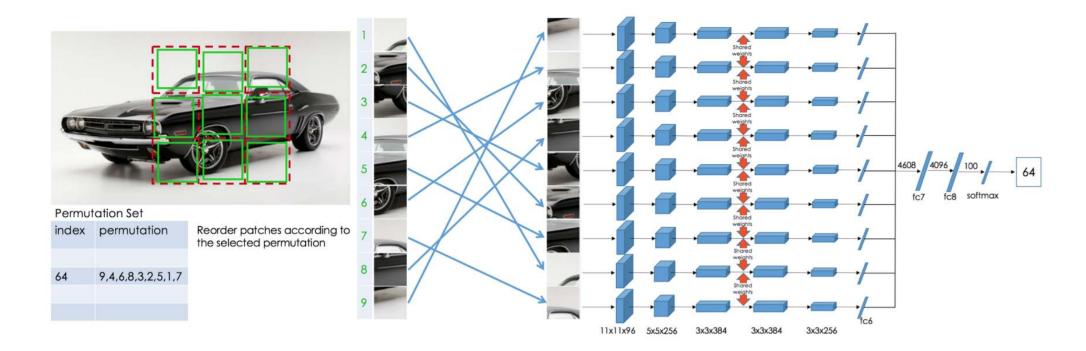


Image-based transformation: jigsaw puzzle}



Contrastive methods

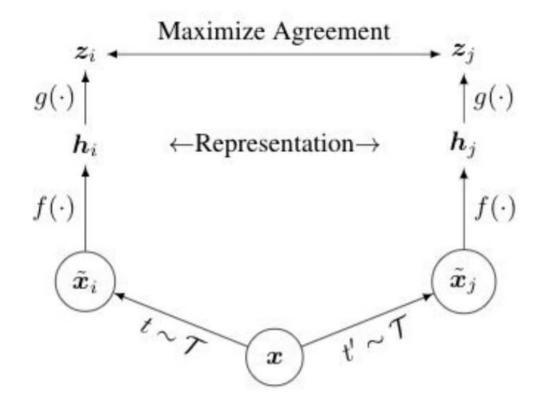
Image based methods

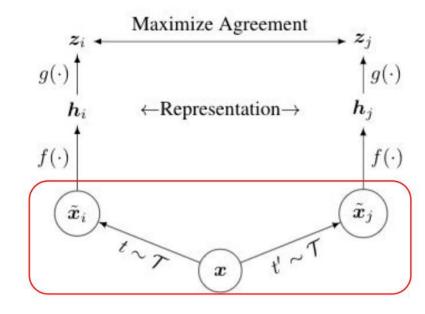
Predict a transformation of an image.

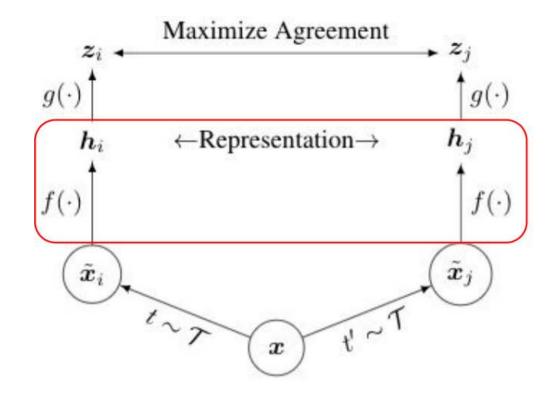
but may not require a complete knowledge of the object.

What properties the pre-trained network should have ?

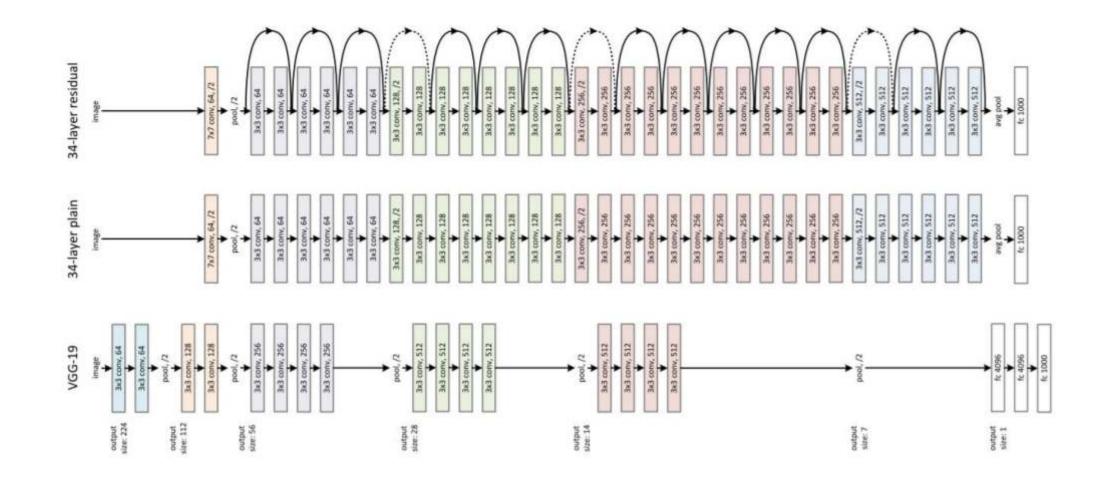
- robust to image variation (illumination, deformation)
 - \rightarrow Produce identical features for the same object
- disciminative with respect to different objects
 - \rightarrow Produce different features for different objects



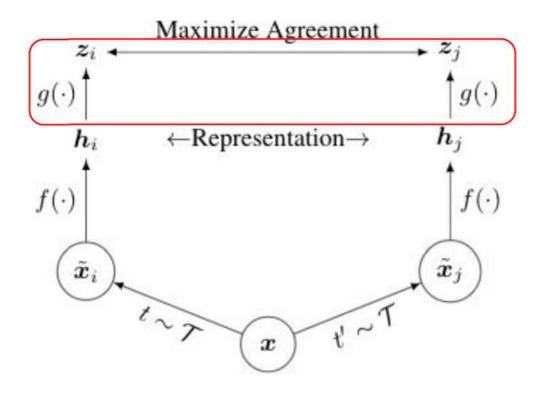


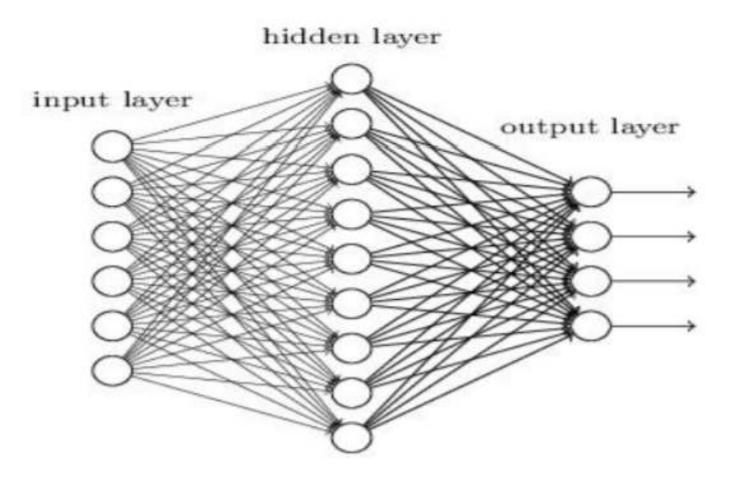


SimCLR



valeo**.ai**





Loss function

Let

$$ext{sim}(\mathbf{u},\mathbf{v}) = rac{\mathbf{u}^ op \mathbf{v}}{||\mathbf{u}^ op \mathbf{v}||_2}$$

The loss function is:

$$\ell_{i,j} = -\lograc{\exp(sim(\mathbf{z}_i\mathbf{z}_j))/ au}{\sum_{k=1}^{2N}\mathbb{I}_{k
eq i}exp(sim(\mathbf{z}_i\mathbf{z}_k))/ au}$$

Analysis

A cross entropy applied label corresponding to the pair generated from x_i .

Conclusion

Unsupervised learning is one of the big thing in machine learning now.

- Can we extract better/general features?
- Can we reduce the training time?
- Do we really exploit all the information in the data?