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Introduction
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What is unsupervised learning?

Definition
Find underlying structures in unlabeled data.

Motivations
Most of the data is unlabeled
Annotations are expensive
Annotations are slow
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What do we do with unsupervised learning?

Dimension reduction
Keep only useful information: easy storage, computation speed up . . .

Clustering
Group data by similarity. Classification (without a guide)

Visualization
Humans do not deal well with n > 3 dimensional space.

Feature extraction
Pre-train neural network on large data (no label) to be further used on small datasets.
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Dimension reduction
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Principal Component
Analysis
Draw a fish

Fishes are 3D objects
How to create 2D representation?
Find the best point of view
Even better: perspective (Giotto, 1420)
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Principal Component Analysis

Principal Component Analysis
PCA is a prejection method to represent the
data by dimension number reduction.
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Principal Component
Analysis: formalism

Linear algebra
 a vector space: structure allowing the

combination of linear vectors

 a base: a family of free and generator
vectors
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Principal Component
Analysis: formalism

Linear algebra
 a vector space: structure allowing the

combination of linear vectors

 a base: a family of free and generator
vectors
Base change: endomorphism ,

Projection: linear application of ,
 being a sub-vector space of 
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Principal Component
Analysis

PCA geometric objective
PCA search for the sub vector space (with
reduced dimensio) for projection which allow
the more accurate projection of the data.
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Principal Component Analysis: formalism

Statistics
Let  and  be 2 Random Variables

Average 
Variance : dispersion measure
Covariance : measures de correlation

Let  a random vector:

Variance-Covariance matrix
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Principal Component Analysis

PCA statistical objective

PCA aims at:
Dispersion maximization on the first dimensions of the base:

 and 
Dimensions are not correlated: 
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Principal Component Analysis: algorithm
Samples  of a random vector .  matrix of s
vectors.

1. Center the sample , s.t., 
2. Build the variance-covariance matrix

3. Diagonalize :

4. Sort the eigenvalues in decreasing order (and eigenvectors)

 We obtain the tranfer matrix  et the eigenvalues .
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Principal Component Analysis: properties
Transfer matrix  made of the vector of the new base:

Projection matrix  in an optimal sub-vector space:
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Principal Component Analysis: properties
The eigenvectors  assotiated with the eigenvalues 
sorted in increasing order
Variance  statistical information carried by the dimension. Link to signal theory:

The principal components (with a large variance) represent the signal
Low variance components are the noise
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Principal Component Analysis: examples

Back to the fishes
Points of  on the surface of the Discus Alenquer

Variances:

Eigen vector base:
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Principal Component Analysis: examples

Back to the fishes
Projection on the two first components (or the two
last)
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Principal Component Analysis: examples

More fishes
3D vs projection on the two first components (canonical representations) and the last.
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Principal Component Analysis: examples

Video analysis
Video images converted to color histrograms and visualized with the 2 first components of the PCA.
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Principal Component Analysis

Key points
High dimension data representation
Dimension reduction
Variable decorrelation
Based on data variance-covariance matrix
diagonalization

Usage
Data preprocessing for data analysis (see the
first classes)
Visualization
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Clustering
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Clustering

Definition
Find categories for close/similar objects
unsupervised classification of the unlabeled data  in 

Objectives
Group similar data, requires a notion of distance
Categorization
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K-means
Let  be the cluster number
A cluster (indexed by ) is a group of points
Let  define if  belongs to cluster 
Let  be the cluster prototypes (caracterization of a prototype)

K-means
Algorithm minimizes:
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K-means

Algorithm
Initilize s, and iterate:

Assign each  to the closest 
Recompute the s according to:

(average location of the group)
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K-means

Properties
 decreases at each iteration

There is a fixed number of cluster, so the algorithm converges
But the solution may not be optimal (local minimum)

Initialization
Initialization is important
E.g., chose the initial  among the data 
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K-means

Statistical variant
Parameters of Gaussian Mixture Model (GMM) estimated by the Expectation-Maximization algorithm.

 is the realisation of a random vector, modeled with a Gaussian mixture:

Estimate: 
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K-means

Variants and tricks
Fuzzy C-means: , a point can belong to several clusters
Different distance: Mahalanobis distance (FCM), complete covariance matrix (GMM)
Outliers: if  to high, 
Criteria for  estimation

 estimation: uniformly spread among the data
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Clustering: other approaches
Partitionnement spectral:

Similarity matrix,
Dimension reduction (first eigen
vectors)
K-means

 complex objects, non vectors

https://fr.wikipedia.org/wiki/Partitionnement_spectral 33
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Clustering: other approaches

DBSCAN
Data partionning in categories of MinPts points in a
radiusϵ
Going through the data step by step to add in a
category

 Automatic estimation of the number of categories,
 deal with outliers

https://fr.wikipedia.org/wiki/DBSCAN 34
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Self-supervised learning
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Overview
Principles
Image-based transformations
Contrastive approaches
SimCLR
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Self-supervised learning

Objective
Create a good features for a downstream task.

Pre-training of the network
Create a pretext task to train the network on.
The labels for task a generated automatically.

Downstream task
This the real final objective. It could be classification, regression...
It is trained in a supervised manner.
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Image-based transformation

Key idea
To predict the transformation of an image, you must \textit{understand} what is in the image.

     

38



Image-based transformation: rotation

Transformation
Random rotation of the image.
Four classes: .
Simple classification problem.
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Image-based transformation: rotation

Transformation
Random rotation of the image.
Four classes: .
Simple classification problem.

Semi-supervised learning
Pre-training: all data (no label)

Target: part of the data with labels
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Image-based transformation: relative position

Transformation
Create a pair of patch, find their relative position.
To solve problem, you need to understand the
object.
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Image-based transformation: jigsaw puzzle}
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Image-based transformation: jigsaw puzzle}
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Contrastive methods

Image based methods
Predict a transformation of an image.

but may not require a complete knowledge of the object.

What properties the pre-trained network should have ?

robust to image variation (illumination, deformation)
 Produce identical features for the same object

disciminative with respect to different objects
 Produce different features for different objects
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SimCLR
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SimCLR
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SimCLR
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SimCLR
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SimCLR
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SimCL
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Loss function
Let

The loss function is:

Analysis
A cross entropy applied label corresponding to the pair generated from .
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Conclusion
Unsupervised learning is one of the big thing in machine learning now.
• Can we extract better/general features?
• Can we reduce the training time?
• Do we really exploit all the information in the data?
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