
Neural networks
Alexandre Boulch

www.boulch.eu

IOGS - ATSI

1

Outline
Introduction
The artificial neuron
Stochastic gradient descent
Multi-label classification

2

Alice

Movie

Motivation

Simple problem:
Predict if Bob will like a movie given Alice's grade

Hypothesis:
Linear problem

3

Alice

Movie

Motivation
Simple problem:
Predict if Bob will like a movie given Alice's grade

Hypothesis:
A simple threshold:

Alice'sscore Bob'sscore

4

Alice

Movie

Motivation
Simple problem:
Predict if Bob will like a movie given Alice's grade

Hypothesis:
A simple threshold

Alice'sscore Bob'sscore

5

Carol

Alice

Motivation
Simple problem:
Predict if Bob will like a movie given Alice's and Carol's
grades

Hypothesis:
An affine function

Alice'sscore Bob'sscoreCarol'sscore
6

Person 1 Bob'sscore...
Person 2
Person n

Motivation
More complicated problem:
Predict if Bob will like a movie given a large user
database

Hypothesis:
An affine function

7

Person 1 Bob'sscore...
Person 2
Person n

Motivation
More complicated problem:
Predict if Bob will like a movie given a large user
database

Hypothesis:
Non-affine function ?

 inputs, parameters, function

8

Motivation

Ideally
General machine learning architectures / bricks

use the same approach for various problems
Learn the parameters

Use data to automatically extractknowledge

Neural networks
Currently one of the most efficient approach for machine learning

9

Artificial neuron

10

Historical Background
1958: Rosenbalt, perceptron
1965: Ivakhenko and Lapa, neural networks with several layers
1975-1990: Backpropagation, Convolutional Neural Networks
2007+: Deep Learning era (see Deep Learning sesion)

Large convolutional neural networks
Transformers
Generative models
"Foundation models"
...

11

Bio inspired model
The brain is made of neurons.
Receive, process and transmit action
potential.
Multiple recievers (dentrites), single
transmitter (axon)

image wikipedia 12

Formulation
A simple model of the neuron: activation level is the weighted sum of the inputs

 the input vector
 the weight matrix

 the bias
 the output

 the activation function

1958 : Rosenbalt, perceptron 13

Carol

Alice

Back to example
Simple problem:
Predict if Bob will like a movie given Alice's and Carol's
grades

Hypothesis:
An affine function

It can be modeled with a single neuron with:

14

Geometric interpretation of the neuron

is an hyperplan of , with the dimension of the space.

The sign of activation defines on which side of lies .

The artificial neuron linear decision.

Previous course on SVM: the SVM was originally formulated using neurons.

15

Limitations

16

Limitations

17

Limitations

18

Possible solution: using multiple stacked neurons

19

Universal approximation theorem

Arbitrary width
Multilayer feed-forward networks with as few as one hidden layer are universal approximators

Cybenko (1989) for sigmoid activation functions
Hornik et al. (1989) for 1 hidden layer
Hornik (1991) any choice of the activation function

Arbitrary depth
Gripenberg (2003)
Yarotsky (2017), Lu et al (2017)
Hanin (2018)
Kidger (2020)

20

Neural networks in practice

Network design
high neuron number: very computationally expensive
prefer stacking more layers

Optimization
several parameters (probably many)
automatic optimization
gradient descent

21

Stochactic gradient descent

22

Carol

Alice

Optimizing the parameters

Objective
Find and such that:

for , the set of movies.

23

Gradient descent

Objective

Reach the bottom of the valley

24

Follow the slope

Gradient descent

Objective

Reach the bottom of the valley

25

Gradient descent
Minimizing an objective function

26

Gradient descent
For every smooth function

i.e., following the opopsite direction of the gradient
leands to a local minimum of the function.

27

Gradient descent
An iteratieve agorithm:

 is the learning rate.

 must be continuous and differentiable almost
everywhere.

28

Gradient descent

Too high learning rate. Too low learning rate.

29

Carol

Alice

Back to example
Simple problem:
Predict if Bob will like a movie given Alice's and Carol's
grades

Hypothesis:
An affine function

Problem of sign function

Need a loss function

30

Sigmoid function

Problem of sign function
Zero-gradient everywhere
Not differentiable at 0

Solution
The sigmoid function is an approximation of the sign
function

31

Objective / loss function
We need a function to compare predictions and ground truth.

A function such that:

it takes 0 values if
it is differentiable
it increases along with the "difference" between the and

Possibilities:

Squared differences:
Cross entropy (for categorical loss)
...

32

Optimization

Forward
Iteratively compute the output of the network

Backward
Itertatively compute the derivatives starting from the output

Weight update
Update weights according to learning rate.

33

Mean Squared Differences
Loss function

Single neuron model

Derivatives:

34

Mean Squared Differences
Loss function

Single neuron model

Derivatives is computed at prediction time:

35

Mean Squared Differences
Loss function

Two neurons model

Derivatives:

We do not want to explicitely compute the loss function.

36

Chain rule
In practice, we make an intensive use of the chain rule:

or for three functions:

37

Chain rule applied to neural networks

38

Chain rule applied to neural networks

39

Chain rule applied to neural networks

40

Code architecture
class Module:
 def __init__(self, …):
 self.weights = ...

 def forward(self, x): y = function(f) # compute output
 self.ctx = # save the stuff for backward
 # (save computation time)
 return y

 def backward(self, grad_output):
 self.grad_weights = … * grad_output # compute gradient w.r.t. parameters
 grad_input = … * grad_output # compute gradient w.r.t. input
 return grad_input # return gradient w.r.t. input for use
 # in previous layer
 def update_weights(self, lr):
 self.weights = self.weights - lr * self.grad_weights # apply gradient descent

41

Carol

Alice

Optimizing the parameters

Objective
Find and such that:

for all , the set of movies.

In practice
No access to the whole set of movies, only a training
subset:

42

Limits of gradient descent

Objectives

with and

Minimizing over :

requires computing for all elements of
is time consuming for one iteration
can be untracktable for large

43

Stochastic gradient Descent (SGD)

Idea
Approximate the training set by picking only one sample at each iteration

Is it the same as gradient descent?

44

Stochastic gradient Descent (SGD)

Problem
Very slow convergence.

Solution
Average gradient over batches.

A batch = random subset of training set

(All neural network librairies handle batches)

45

Vectorization trick

Numpy style

batch # size (B, in_size)
w # size (out_size, in_size)
B # size (out_size)

output = []
for i in range(batch.shape[0]):
 temp = w @ batch[i] + b
 output.append(temp)
output = np.stack(axis=0)

output # size (B, out_size)

With batch operations

batch # size (B, in_size)
w # size (in_size, out_size)
B # size (out_size)

output = batch @ w + B

output # size (B, out_size)

46

Multi-label classification

47

Information
Information estimate the number of bits required to encode/transmit an event:

Always the same: less information
Very various: more information

Information for an event , given , the probability of :

48

Entropy
Entropy is the number of bits to encode/transmit a random event:

A skewed (biased) distribution, e.g., always same value: low entropy
A uniform distribution: high entropy

Entropy , for a random variable with a set of in discrete states discrete states and their
probability :

49

Cross-Entropy
Cross entropy estimate the number of bits to transmit from one distribution to a second distribution .

 is the target, is the source.

 estimates the additional number of bits to represent an event using instead of .

50

Cross-entropy loss
For one sample :

For a dataset:

(averaged for insensibility to dataset size)

51

Cross-entropy loss - Classification

For classification, let be a sample of class .

Then:

52

Cross-entropy loss - Binary classification

Let .

Let be the estimated probability of class for .
(e.g., , with a sigmoid and be the output of the network)

Then the Binary cross entropy is:

53

Multi-label classification
Can we use a single output for multi-label classification?

Example with 5 classes

54

Cross-entropy loss - Multi-label classification
Can we use a single output for multi-label classification?

Example with 5 classes

55

Multi-label classification

Solution
Predict a vector, one value per class:

Highest value is the selected class:

What loss can we use?

56

Cross-entropy loss - Multi-label classification
 is not differentiable

Seeing the output as a distribution probability allows to use cross-entropy

Let be a normalization layer, then:

What can we use?

euclidean normalization
Soft-Max

57

Cross-entropy loss - Multi-label classification

Soft-Max

Good properties associated with cross entropy:

And derivative:

58

Practical session

59

Practical session

Implement a simple neural network
Define the number of layers / neurons
Setup a stochastic gradient descent procedure
Plot the results
Explore several losses
Go multi-labels

Tools
Google Colab
Pytorch
Matplotlib / pyplot for visualization

60

