1

Neural networks

Alexandre Boulch

www.boulch.eu

IOGS - ATSI

Outline

- Introduction
- The artificial neuron
- Stochastic gradient descent
- Multi-label classification

Simple problem:

Predict if Bob will like a movie given Alice's grade

Hypothesis:

Linear problem

Simple problem:

Predict if Bob will like a movie given Alice's grade

Hypothesis:

A simple threshold:

$$y = sign(x+b)$$

Simple problem:

Predict if Bob will like a movie given Alice's grade

Hypothesis:

A simple threshold

$$y = sign(x+b)$$

Simple problem:

Predict if Bob will like a movie given Alice's and Carol's grades

Hypothesis:

An affine function

$$y = sign(w_a x_a + w_c x_c + b)$$

More complicated problem:

Predict if Bob will like a movie given a large user database

Hypothesis:

An affine function

$$y=sign(w_1x_1+w_2x_2+\ldots+b)$$

More complicated problem:

Predict if Bob will like a movie given a large user database

Hypothesis:

Non-affine function ?

 $y=\phi(\{x_i\},\Theta)$

 x_i inputs, Θ parameters, ϕ function

Motivation

Ideally

- General machine learning architectures / bricks
 - $\circ\;$ use the same approach for various problems
- Learn the parameters
 - Use data to automatically extractknowledge

Neural networks

• Currently one of the most efficient approach for machine learning

Artificial neuron

Historical Background

- 1958: Rosenbalt, perceptron
- 1965: Ivakhenko and Lapa, neural networks with several layers
- 1975-1990: Backpropagation, Convolutional Neural Networks
- 2007+: Deep Learning era (see Deep Learning sesion)
 - Large convolutional neural networks
 - Transformers
 - Generative models
 - "Foundation models"
 - Ο ...

Bio inspired model

- The brain is made of neurons.
- Receive, process and transmit action potential.
- Multiple recievers (dentrites), single transmitter (axon)

Formulation

A simple model of the neuron: activation level is the weighted sum of the inputs

$$y = \sigma(\mathbf{w}\mathbf{x} + b)$$

- $\mathbf{x} \in \mathbb{R}^n$ the input vector
- $\mathbf{w} \in 1 imes \mathbb{R}^n$ the weight matrix
- $b\in\mathbb{R}$ the bias
- $y \in \mathbb{R}$ the output
- $\sigma,\,\mathbb{R} o\mathbb{R}$ the activation function

Back to example

Simple problem:

Predict if Bob will like a movie given Alice's and Carol's grades

Hypothesis:

An affine function

$$y = sign(w_a x_a + w_c x_c + b)$$

It can be modeled with a single neuron with:

$$\sigma(.\,)=sign(.\,)$$

Geometric interpretation of the neuron

$\mathcal{P}: \mathbf{wx} + b = 0$

is an hyperplan of \mathbb{R}^n , with n the dimension of the space.

The sign of activation y defines on which side of \mathcal{P} lies **x**.

The artificial neuron \rightarrow linear decision.

Previous course on SVM: the SVM was originally formulated using neurons.

Limitations

Limitations

Limitations

Possible solution: using multiple stacked neurons

Universal approximation theorem

Arbitrary width

Multilayer feed-forward networks with as few as one hidden layer are universal approximators

- Cybenko (1989) for sigmoid activation functions
- Hornik et al. (1989) for 1 hidden layer
- Hornik (1991) any choice of the activation function

Arbitrary depth

- Gripenberg (2003)
- Yarotsky (2017), Lu et al (2017)
- Hanin (2018)
- Kidger (2020)

Neural networks in practice

Network design

- high neuron number: very computationally expensive
- prefer stacking more layers

Optimization

- several parameters (probably many)
- automatic optimization
- gradient descent

Stochactic gradient descent

Optimizing the parameters

Objective

Find \mathbf{w} and b such that:

$$\hat{y} = \sigma(\mathbf{w}x + b) pprox y$$

for $x\in M$, the set of movies.

Objective

Reach the bottom of the valley

valeo.<mark>ai</mark>

Gradient descent

Objective

Reach the bottom of the valley

Follow the slope

Minimizing an objective function f: heta
ightarrow f(heta) $\operatorname*{argmin}_{ heta}f(heta)$

For every smooth function f

 $orall x,
abla f
eq 0 \Rightarrow \exists \epsilon, f(x) > f(x - \epsilon
abla f_x)$

i.e., following the opopsite direction of the gradient leands to a local minimum of the function.

An iteratieve agorithm:

$$heta_{i+1} \longleftarrow heta_i - r
abla heta_i$$

r is the learning rate.

f must be **continuous** and **differentiable** almost everywhere.

Gradient descent

Too high learning rate.

Too low learning rate.

θ

Back to example

Simple problem:

Predict if Bob will like a movie given Alice's and Carol's grades

Hypothesis:

An affine function

$$y = sign(w_a x_a + w_c x_c + b)$$

Problem of sign function

Need a loss function

Sigmoid function

Problem of sign function

- Zero-gradient everywhere
- Not differentiable at 0

Solution

The sigmoid function is an approximation of the sign function

$$y = \sigma(x) = \frac{1}{1 + e^{-x}}$$

Objective / loss function

We need a function to compare predictions and ground truth.

A function such that:

- it takes 0 values if $\hat{y} = y$
- it is differentiable
- it increases along with the "difference" between the \hat{y} and y

Possibilities:

- Squared differences: $||\hat{y} y||_2^2$
- Cross entropy (for categorical loss)

• ...

Optimization

Forward

Iteratively compute the output of the network

Backward

Itertatively compute the derivatives starting from the output

Weight update

Update weights according to learning rate.

$$heta_{i+1} \leftarrow heta_i - r
abla heta_i$$

Mean Squared Differences

Loss function

$$\mathcal{L} = rac{1}{N}\sum_1^N ||\hat{y}_n - y_n||_2^2$$

Single neuron model

$$\mathcal{L} = rac{1}{N}\sum_1^N ||\sigma(\mathbf{w} x_n + b) - y_n||_2^2$$

Derivatives:

$$egin{aligned} rac{\partial \mathcal{L}}{\partial \mathbf{w}_i} &= rac{2}{N} \sum_1^N x_i \sigma(\mathbf{w} x_n + b) (1 - \sigma(\mathbf{w} x_n + b)) (\sigma(\mathbf{w} x_n + b) - y_n) \ &rac{\partial \mathcal{L}}{\partial b} &= rac{2}{N} \sum_1^N \sigma(\mathbf{w} x_n + b) (1 - \sigma(\mathbf{w} x_n + b)) (\sigma(\mathbf{w} x_n + b) - y_n) \end{aligned}$$

Mean Squared Differences

Loss function

$$\mathcal{L} = rac{1}{N}\sum_1^N ||\hat{y}_n - y_n||_2^2$$

Single neuron model

$$\mathcal{L} = rac{1}{N}\sum_1^N ||\sigma(\mathbf{w} x_n + b) - y_n||_2^2$$

Derivatives \hat{y}_n is computed at prediction time:

$$egin{aligned} rac{\partial \mathcal{L}}{\partial \mathbf{w}_i} &= rac{2}{N} \sum_1^N x_i \hat{y}_n (1-\hat{y}_n) (\hat{y}_n-y_n) \ &rac{\partial \mathcal{L}}{\partial b} &= rac{2}{N} \sum_1^N \hat{y}_n (1-\hat{y}_n) (\hat{y}_n-y_n) \end{aligned}$$

Mean Squared Differences

Loss function

$$\mathcal{L} = rac{1}{N}\sum_1^N ||\hat{y}_n - y_n||_2^2$$

Two neurons model

$$\mathcal{L} = rac{1}{N}\sum_1^N ||\sigma(\mathbf{w_2}(\sigma(\mathbf{w_1}x_n+b_1))+b_2)-y_n||_2^2$$

Derivatives:

$$rac{\partial \mathcal{L}}{\partial \mathbf{w}_{1,i}} = \dots \quad rac{\partial \mathcal{L}}{\partial b_1} = \dots \quad rac{\partial \mathcal{L}}{\partial \mathbf{w}_{2,i}} = \dots \quad rac{\partial \mathcal{L}}{\partial b_2} = \dots$$

We do not want to explicitely compute the loss function.

Chain rule

In practice, we make an intensive use of the chain rule:

$$rac{\partial g\circ f(a,b)}{\partial a}=rac{\partial f(a,b)}{\partial a}g'(f(a,b))$$

or for three functions:

$$rac{\partial h \circ g \circ f(a,b)}{\partial a} = rac{\partial g \circ f(a,b)}{\partial a} h'(g(f(a,b)))
onumber \ rac{\partial h \circ g \circ f(a,b)}{\partial a} = rac{\partial f(a,b)}{\partial a} g'(f(a,b))h'(g(f(a,b)))$$

Chain rule applied to neural networks

Forward

 $y_2 = f_2(y_1)$ $y_3 = f_3(y_2, \theta_2)$ $\boldsymbol{y}_1 = \boldsymbol{f}_1(\boldsymbol{x}_n, \boldsymbol{\theta}_1)$ $\hat{y} = L(y_3, y_n)$

Chain rule applied to neural networks

Chain rule applied to neural networks

Code architecture

```
class Module:
 def __init__(self, ...):
    self.weights = ...
  def forward(self, x): y = function(f)
                                                            # compute output
    self.ctx =
                                                            # save the stuff for backward
                                                            #
                                                                  (save computation time)
   return y
  def backward(self, grad output):
    self.grad_weights = ... * grad_output
                                                            # compute gradient w.r.t. parameters
    grad input = ... * grad output
                                                            # compute gradient w.r.t. input
                                                            # return gradient w.r.t. input for use
   return grad input
                                                            # in previous layer
  def update_weights(self, lr):
    self.weights = self.weights - lr * self.grad weights
                                                            # apply gradient descent
```

Optimizing the parameters

Objective

Find \mathbf{w} and b such that:

 $\hat{y} = \sigma(\mathbf{w}x + b) pprox y$

for all $x \in \mathcal{M}$, the set of movies.

In practice

No access to the whole set of movies, only a training subset:

 $(x_n,y_n)\in \mathbb{R} imes \{0,1\}\in X_{train}$

Limits of gradient descent

Objectives

$$\operatorname*{argmin}_{\Theta} \quad \mathcal{L}(X_{train}, \Theta)$$

with
$$\mathcal{L} = rac{1}{N} \sum_N \mathcal{L}_n$$
 and $abla \mathcal{L} rac{1}{N} \sum_N
abla \mathcal{L}_n$

Minimizing over X_{train} :

- requires computing \mathcal{L}_n for all elements of X_{train}
- is time consuming for one iteration
- can be untracktable for large X_{train}

Stochastic gradient Descent (SGD)

Idea

Approximate the training set by picking only one sample at each iteration

$$\mathcal{L} = \mathcal{L}_n \qquad
abla \mathcal{L} =
abla \mathcal{L}_n$$

Is it the same as gradient descent?

$$egin{aligned} \mathbb{E}_{n\sim U}[rac{\partial}{\partial w}\mathcal{L}_n(w)] &= rac{\partial}{\partial w}\mathbb{E}_{n\sim U}[\mathcal{L}_n(w)] \quad ext{(Fubini)} \ &= rac{\partial}{\partial w}\sum_{i=1}^N \mathbb{P}(n=i)\mathcal{L}_i(w) \ &= rac{\partial}{\partial w}rac{1}{N}\sum_{i=1}^N \mathcal{L}_i(w) = rac{\partial}{\partial w}\mathcal{L}(w) \end{aligned}$$

Stochastic gradient Descent (SGD)

Problem

Very slow convergence.

Solution

Average gradient over **batches**.

A batch = random subset of training set

(All neural network librairies handle batches)

Vectorization trick

Numpy style

With batch operations

```
batch # size (B, in_size)
w # size (out_size, in_size)
B # size (out_size)
output = []
for i in range(batch.shape[0]):
  temp = w @ batch[i] + b
  output.append(temp)
output = np.stack(axis=0)
output # size (B, out_size)
batch # size (B, in_size)
w # size (in_size, out_size)
B # size (out_size)
output = batch @ w + B
 output # size (B, out_size)
```

Multi-label classification

Information

Information estimate the number of bits required to encode/transmit an event:

- Always the same: less information
- Very various: more information

Information h(j) for an event j, given P(j), the probability of j:

h(j) = -log(P(j))

Entropy

Entropy is the number of bits to encode/transmit a random event:

- A skewed (biased) distribution, e.g., always same value: low entropy
- A uniform distribution: high entropy

Entropy H(j), for a random variable with a set of j in C discrete states discrete states and their probability P(j):

$$H(P) = -\sum_{j \in C} P(j) log(P(j))$$
 .

Cross-Entropy

Cross entropy estimate the number of bits to transmit from one distribution Q to a second distribution P. P is the target, Q is the source.

$$H(P,Q) = -\sum_{j \in C} P(j) log(Q(j)) \; ,$$

H estimates the additional number of bits to represent an event using P instead of Q.

Cross-entropy loss

For one sample *x*:

$$\mathcal{L}_{ce}(x) = H(P_x,Q_x) = -\sum_{j\in C} P_x(j) log(Q_x(j))$$

For a dataset:

$$\mathcal{L}_{ce} = H(P,Q) = -rac{1}{N}\sum_{1}^{N}\sum_{j\in C}P_{x_n}(j)log(Q_{x_n}(j))$$

(averaged for insensibility to dataset size)

Cross-entropy loss - Classification

$$\mathcal{L}_{ce} = H(P,Q) = -rac{1}{N}\sum_{1}^{N}\sum_{j\in C}P_{x_n}(j)log(Q_{x_n}(j))$$

For classification, let x_n be a sample of class $c_n \in C$.

$$P_{x_n}(i) = egin{cases} 1, & ext{if}\ i=c_n.\ 0, & ext{otherwise}. \end{cases}$$

Then:

$$\mathcal{L}_{ce} = -rac{1}{N}\sum_{1}^{N}log(Q_{x_n}(c_n))$$

Cross-entropy loss - Binary classification

 $\mathcal{L}_{ce}(x_n)=-log(Q_{x_n}(c_n)), \quad c_n\in\{c_0,c_1\}$

- Let $y = \mathbb{P}(c_n = c_1)$.
- Let \hat{y}_n be the **estimated probability** of class c_1 for x_n . (e.g., $\sigma(\phi(x_n))$, with σ a sigmoid and $\phi(x_n)$ be the output of the network)

$$egin{aligned} \mathcal{L}_{ce}(x_n) &= -log(\hat{y}_n), & ext{if } c_n = c_1, ext{i.e.}, y_n = 1 \ \mathcal{L}_{ce}(x_n) &= -log(1-\hat{y}_n), & ext{if } c_n = c_0, ext{i.e.}, y_n = 0 \end{aligned}$$

• Then the **Binary cross entropy** is:

$$\mathcal{L}_{bce}(x_n) = -y_n log(\hat{y_n}) - (1-y_n) log(1-\hat{y}_n)$$

Multi-label classification

Can we use a single output for multi-label classification?

Example with 5 classes

$$\phi(x_n)=\hat{y}_n\in[0,4]$$

Cross-entropy loss - Multi-label classification

Can we use a single output for multi-label classification?

Example with 5 classes

 $\phi(x_n)=\hat{y}_n\in[0,4]$

Multi-label classification

Solution

Predict a vector, one value per class:

Highest value is the selected class:

$$\hat{c}_n = \operatorname*{argmax}_i \, \hat{y}_n^i$$

 $\hat{y}_n \in \mathbb{R}^C$

What loss can we use?

Cross-entropy loss - Multi-label classification

 argmax is not differentiable

Seeing the output as a distribution probability allows to use cross-entropy

Let $p_n^i = s(y_n)^i$ be a normalization layer, then:

$$\mathcal{L}_{ce}(x_n) = -log(s(\hat{y}_n)^{c_n}) = -log(p_n^{c_n})$$

What s can we use?

- euclidean normalization y/||y||
- Soft-Max

Cross-entropy loss - Multi-label classification

Soft-Max

$$p^i(x) = rac{e^{x^i}}{\sum_{j\in C} e^{x^j}}$$

Good properties associated with cross entropy:

$$\mathcal{L}_{ce}(\hat{y},c) = -\hat{y}^c + log(\sum_{j\in C} e^{\hat{y}^j}),$$

And derivative:

$$rac{\mathcal{L}_{ce}(\hat{y},c)}{\partial \hat{y}^c} = -1 + s(\hat{y}) \qquad rac{\mathcal{L}_{ce}(\hat{y},c)}{\partial \hat{y}^i} = s(\hat{y}), \, ext{if} \, i
eq c$$

Practical session

Practical session

Implement a simple neural network

- Define the number of layers / neurons
- Setup a stochastic gradient descent procedure
- Plot the results
- Explore several losses
- Go multi-labels

Tools

- Google Colab
- Pytorch
- Matplotlib / pyplot for visualization

