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Motivation
Simple problem:
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Person 2
Person n

Motivation
More complicated problem:
Predict if Bob will like a movie given a large user
database
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Motivation
More complicated problem:
Predict if Bob will like a movie given a large user
database

Hypothesis:
Non-affine function ?

 inputs,  parameters,  function
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Motivation

Ideally
General machine learning architectures / bricks

use the same approach for various problems
Learn the parameters

Use data to automatically extractknowledge

Neural networks
Currently one of the most efficient approach for machine learning
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Artificial neuron
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Historical Background
1958: Rosenbalt, perceptron
1965: Ivakhenko and Lapa, neural networks with several layers
1975-1990: Backpropagation, Convolutional Neural Networks
2007+: Deep Learning era (see Deep Learning sesion)

Large convolutional neural networks
Transformers
Generative models
"Foundation models"
...
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Bio inspired model
The brain is made of neurons.
Receive, process and transmit action
potential.
Multiple recievers (dentrites), single
transmitter (axon)

image wikipedia 12



Formulation
A simple model of the neuron: activation level is the weighted sum of the inputs

 the input vector
 the weight matrix

 the bias
 the output

 the activation function
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Carol

Alice

Back to example
Simple problem:
Predict if Bob will like a movie given Alice's and Carol's
grades

Hypothesis:
An affine function

It can be modeled with a single neuron with:
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Geometric interpretation of the neuron

is an hyperplan of , with  the dimension of the space.

The sign of activation  defines on which side of  lies .

The artificial neuron  linear decision.

Previous course on SVM: the SVM was originally formulated using neurons.
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Limitations
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Limitations
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Limitations
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Possible solution: using multiple stacked neurons
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Universal approximation theorem

Arbitrary width
Multilayer feed-forward networks with as few as one hidden layer are universal approximators

Cybenko (1989) for sigmoid activation functions
Hornik et al. (1989) for 1 hidden layer
Hornik (1991) any choice of the activation function

Arbitrary depth
Gripenberg (2003)
Yarotsky (2017), Lu et al (2017)
Hanin (2018)
Kidger (2020)
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Neural networks in practice

Network design
high neuron number: very computationally expensive
prefer stacking more layers

Optimization
several parameters (probably many)
automatic optimization
gradient descent
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Stochactic gradient descent
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Carol

Alice

Optimizing the parameters

Objective
Find  and  such that:

for , the set of movies.
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Gradient descent

Objective

Reach the bottom of the valley
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Follow the slope

Gradient descent

Objective

Reach the bottom of the valley
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Gradient descent
Minimizing an objective function 
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Gradient descent
For every smooth function 

i.e., following the opopsite direction of the gradient
leands to a local minimum of the function.
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Gradient descent
An iteratieve agorithm:

 is the learning rate.

 must be continuous and differentiable almost
everywhere.
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Gradient descent

Too high learning rate. Too low learning rate.
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Carol

Alice

Back to example
Simple problem:
Predict if Bob will like a movie given Alice's and Carol's
grades

Hypothesis:
An affine function

Problem of sign function

Need a loss function
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Sigmoid function

Problem of sign function
Zero-gradient everywhere
Not differentiable at 0

Solution
The sigmoid function is an approximation of the sign
function
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Objective / loss function
We need a function to compare predictions and ground truth.

A function such that:

it takes 0 values if 
it is differentiable
it increases along with the "difference" between the  and 

Possibilities:

Squared differences: 
Cross entropy (for categorical loss)
...
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Optimization

Forward
Iteratively compute the output of the network

Backward
Itertatively compute the derivatives starting from the output

Weight update
Update weights according to learning rate.
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Mean Squared Differences
Loss function

Single neuron model

Derivatives:

     

34



Mean Squared Differences
Loss function

Single neuron model

Derivatives  is computed at prediction time:
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Mean Squared Differences
Loss function

Two neurons model

Derivatives:

We do not want to explicitely compute the loss function.
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Chain rule
In practice, we make an intensive use of the chain rule:

or for three functions:

     

37



Chain rule applied to neural networks
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Chain rule applied to neural networks
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Chain rule applied to neural networks
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Code architecture
class Module: 
  def __init__(self, …): 
    self.weights = ...  
    
  def forward(self, x): y = function(f)                     # compute output 
    self.ctx =                                              # save the stuff for backward 
                                                            #     (save computation time) 
    return y 
 
  def backward(self, grad_output):
    self.grad_weights = … * grad_output                     # compute gradient w.r.t. parameters 
    grad_input = … * grad_output                            # compute gradient w.r.t. input 
    return grad_input                                       # return gradient w.r.t. input for use 
                                                            #      in previous layer 
  def update_weights(self, lr): 
    self.weights = self.weights - lr * self.grad_weights    # apply gradient descent
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Carol

Alice

Optimizing the parameters

Objective
Find  and  such that:

for all , the set of movies.

In practice
No access to the whole set of movies, only a training
subset:
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Limits of gradient descent

Objectives

with  and 

Minimizing over :

requires computing  for all elements of 
is time consuming for one iteration
can be untracktable for large 
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Stochastic gradient Descent (SGD)

Idea
Approximate the training set by picking only one sample at each iteration

Is it the same as gradient descent?
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Stochastic gradient Descent (SGD)

Problem
Very slow convergence.

 

 

Solution
Average gradient over batches.

A batch = random subset of training set

(All neural network librairies handle batches)
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Vectorization trick

Numpy style

batch # size (B, in_size)
w # size (out_size, in_size)
B # size (out_size)

output = []
for i in range(batch.shape[0]):
  temp = w @ batch[i] + b
  output.append(temp)
output = np.stack(axis=0)

output # size (B, out_size)

With batch operations

batch # size (B, in_size)
w # size (in_size, out_size)
B # size (out_size)

output = batch @ w + B

output # size (B, out_size)
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Multi-label classification
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Information
Information estimate the number of bits required to encode/transmit an event:

Always the same: less information
Very various: more information

Information  for an event , given , the probability of :
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Entropy
Entropy is the number of bits to encode/transmit a random event:

A skewed (biased) distribution, e.g., always same value: low entropy
A uniform distribution: high entropy

Entropy , for a random variable with a set of  in  discrete states discrete states and their
probability :
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Cross-Entropy
Cross entropy estimate the number of bits to transmit from one distribution  to a second distribution .

 is the target,  is the source.

 estimates the additional number of bits to represent an event using  instead of .

     

50



Cross-entropy loss
For one sample :

For a dataset:

(averaged for insensibility to dataset size)
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Cross-entropy loss - Classification

For classification, let  be a sample of class .

Then:
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Cross-entropy loss - Binary classification

Let .

Let  be the estimated probability of class  for .
(e.g., , with  a sigmoid and  be the output of the network)

Then the Binary cross entropy is:
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Multi-label classification
Can we use a single output for multi-label classification?

Example with 5 classes
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Cross-entropy loss - Multi-label classification
Can we use a single output for multi-label classification?

Example with 5 classes
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Multi-label classification

Solution
Predict a vector, one value per class:

Highest value is the selected class:

What loss can we use?

     

56



Cross-entropy loss - Multi-label classification
 is not differentiable

Seeing the output as a distribution probability allows to use cross-entropy

Let  be a normalization layer, then:

What  can we use?

euclidean normalization 
Soft-Max
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Cross-entropy loss - Multi-label classification

Soft-Max

Good properties associated with cross entropy:

And derivative:
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Practical session
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Practical session

Implement a simple neural network
Define the number of layers / neurons
Setup a stochastic gradient descent procedure
Plot the results
Explore several losses
Go multi-labels

Tools
Google Colab
Pytorch
Matplotlib / pyplot for visualization
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