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Outline

e Back on last course
e Concept of deep learning
e Convolutional Neural Networks

e Attention and transformers



Back on neural networks

The linear layer

e Also called fully connected
© a neuron is connected to all the
inputs

e High number of parameters (W matrix):

[inputs| x |outputs]|
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Multi-layer perceptron

A stack of linear layers with activation functions (e.g., sigmoids)

Optimization with gradient descent.
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Optimization: forward-backward algorithm
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Chain rule applied to neural networks

Forward

N N\ N\

Y1:f1(xn181) yzzfz(yl) y3:f3(y2’62) j}:L(yB’yn)



Chain rule applied to neural networks

Forward

‘yl:fl(x"’gl) yzzfz(yl) y3:f3(y23'92) j):L(yS,yn)
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Chain rule applied to neural networks

Forward

ylzfl(xr.Mel)

Backward
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Deep learning concept

Data Features

e.g. HOG

Classifier Class
gl — Bicycle
e.g. SVM

SN -

Machine learning
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Deep learning concept

Features

Space 1

Features

Space 2
Easier for
classification

Class

Classifier —Bicycle
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Deep learning concept

Features

Features
Features
Classifier

S2 S3

Machine learning

Class

‘» —>Bicycle
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Massively data driven approaches
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Convolutions and image processing
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Multi-layer perceptron (before

1990)

Input

MLP becomes larger and deeper

e difficult convergence
e very long training
e progessive loss of interest

e few data

SVM

Output

® simpe to use
e convergence proof

e fast
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Multi-layer perceptron for
Images

Using a linear layer ?

Lots of weights! (at least one per pixel!)

Neurons see

MNAVAVAVAVAN

the whole image
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Multi-layer perceptron for
Images

Using a linear layer ?

Lots of weights! (at least one per pixel!)

s it interesting to look at relations in the
whole image ?

https://www.flickr.com/photos/nathelbiya/17050330

Look at
the whole
image
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https://www.flickr.com/photos/nathelbiya/17050330

Convolution

Look at small neighborhoods (where the
objects are)

https://www.flickr.com/photos/nathelbiya/17050330

Look at
neighborhoods
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https://www.flickr.com/photos/nathelbiya/17050330

Convolution

Look at small neighborhoods (where the
objects are)

Create neurons that take a patch input

| NEAN

ANEN
R VAN

NN Vi VA VAN

MNANAVAVAVAN

One different operation
for each neuron
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Convolution

Problem

Translation of the object must lead to same
behaviour of the neurons

https://www.flickr.com/photos/nathelbiya/17050330

Same behaviour for the same
pattern at different location
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https://www.flickr.com/photos/nathelbiya/17050330

Convolution

Problem

Translation of the object must lead to same
behaviour of the neurons

Solution

Use the same neuron (i.e. all the neurons of
the layer share weights)

NANAVAVAVAN

-~

)

Same neuron
(weight sharing)
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Convolution

Forward
Let (4, j) be the coordinates in the input
map.

(k, 1) be the size of the patch (size of the
kernel, usually k = 1)

Then:

Yij = E E Wk Titkj+1 + b
z

k

) VAN
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MNANAVAVAN
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Convolution

Backward weight update

Let y be the output map and Ay be the gradient coming back:

E E Ttk il
8wkl T

Finally, the update rule:

Oy
Wil < WE] — aawkl Ay
Am Z Z wi—l—k,j—HAyZ,j
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Convolutions

Forward

Same with term to term multiplication:
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Convolution: what do convolutions learn?

First layer of AlexNet.
Gabor filters.
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Dimension reduction

With the previous convolution, the output dimension is the same as the output dimension.
For classification: only one label, need for dimension reduction.

e convolution stride: do not look at all the pixels of the input (one every two, one every three...)

¢ Max Pooling
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Max Pooling

e dimension reduction

e relative translation invariability

O\
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Max Pooling

Forward

Max signal

Backward

Gradient transmission to max
signal origin, zero otherwise
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Convolutional Neural Netowkrs - LeNet (1990

LeNet (1990)
Images 28x28

Very good results on digits recognition !
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Isues

Issues

Learning speed
Exploding or vanishing gradients
Overfitting

Local minima

Limitations

e Architecture

Initialization
Computing power
Data

Optimization
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Solutions

e activations

e mini-batches

batch norm

e good weight initialization

better optimization
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Activations

-

Tangente Sigmoide Rectified Linear
hypebolique Unit (RelLU)

Rectified linear unit

e Faster gradient computation

e Similar convergence
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Mini-batches

Gradient smoothing

Smoother gradient converges faster.
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BatchNorm

~L s [

| ] |

Layer |
Layer |+1

Changes in the signal dynamic make the model more difficult to optimize: exponential or vanishing
gradients.

Objective: control the signal distribution:

l

Ix Yy — @

Yy = v+ 8
Vo?+e

v and B are learnt, 1 and o are computed (mean and standard deviation).

Learning is faster (iteration number) but slower (statistics computation).
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Weight initialization
Weights have great influence on convergence speed.

They are randomly initialized.

¢ too small weigths: vanishing signal

e to high: exploding signal

Conservation of signal properties.

Var(Y) = Var(X)
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Weight initialization

Xavier initialization

X € R", weights W and output Y € R
Y =W X +WeXo+---+W,X,
X; and W, independent:
Var(W; X;) = E[X;)*Var(W;) + Var(X;)Var(W;) + Var(X;)E[W;)?
E[X;] =0and E[W;] = 0:
Var(W;X;) = Var(X;)Var(W;)
finally $ Var(Y) = n Var(X_i) Var(W_i)$ and we chose

1
Var(Wi) = —

n
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Optimization - Stochastic Gradient Descent

See neural network class

Update rule: w; 1 = w; + aAw (learning rate «)

Unreachable
area

Low probability
area

Start with high
/\ learning rate

Reduce
learning rate

Low learning rate

e Step decrease
e Exponential decrease

e Cosine annealing ...

High learning rate

High learning rate
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Optimization - SGD with Momentum

Same idea as mini batch: smooth gradient in the good direction

Momentum

Use previous gradient to ponderate the direction of the new gradient.

Vv = Y1 + aAw
Wt = Wt—1 — V¢

v is the momentum.
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ResNet
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Deep Residual Learning for Image Recognition, He et al.
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Do not forget the classics
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Data

e Representative
e Data augmentation

e Data normalization

41



Data

Train data must be representative of the problem

A A
Train data

(o) (o) k
° 8 8000 S Ooo ,"

(o) o) (o) '

O ",

ViR 4

{'
Test data 80000 8
' ot

Train data is not
representative



Data

Data normalization

-Compute mean p and standard deviation ¢ on the train set.
-Normalize input I (train and test):

N>
1
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Data - data augmentation

Random variations of input parameters (images: lightness, contrast \dots)

e train on a more representative set

e avoid learning on unwanted features

Lightness / Contrast

Symmetry
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Problems and partial solutions

Problems

e Small amount of data

e | ow computational power

Solutions ?

e Use classical approaches (Perceptron, SVM, ..)
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