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Outline
Back on last course
Concept of deep learning
Convolutional Neural Networks
Attention and transformers
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Back on neural networks

The linear layer
Also called fully connected

a neuron is connected to all the
inputs

High number of parameters (  matrix):
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Multi-layer perceptron
A stack of linear layers with activation functions (e.g., sigmoids)

Optimization with gradient descent.
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Optimization: forward-backward algorithm
     

5



Chain rule applied to neural networks
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Chain rule applied to neural networks
     

7



Chain rule applied to neural networks
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Deep learning concept
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Deep learning concept
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Deep learning concept
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Massively data driven approaches
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Convolutions and image processing
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Multi-layer perceptron (before
1990)

MLP becomes larger and deeper
difficult convergence
few data
very long training
progessive loss of interest

SVM
simpe to use
convergence proof
fast

15



Multi-layer perceptron for
images

Using a linear layer ?
Lots of weights! (at least one per pixel!)
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Multi-layer perceptron for
images

Using a linear layer ?
Lots of weights! (at least one per pixel!)

Is it interesting to look at relations in the
whole image ?
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Convolution
Look at small neighborhoods (where the
objects are)
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Convolution
Look at small neighborhoods (where the
objects are)

Create neurons that take a patch input
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Convolution

Problem
Translation of the object must lead to same
behaviour of the neurons
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Convolution

Problem
Translation of the object must lead to same
behaviour of the neurons

Solution
Use the same neuron (i.e. all the neurons of
the layer share weights)
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Convolution

Forward
Let  be the coordinates in the input
map.

 be the size of the patch (size of the
kernel, usually )

Then:
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Convolution
Backward weight update

Let  be the output map and  be the gradient coming back:

Finally, the update rule:
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Convolutions

Forward
Same with term to term multiplication:
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Convolution: what do convolutions learn?

Gabor filters.
First layer of AlexNet.
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Dimension reduction
With the previous convolution, the output dimension is the same as the output dimension.

For classification: only one label, need for dimension reduction.

convolution stride: do not look at all the pixels of the input (one every two, one every three...)
Max Pooling
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Max Pooling
dimension reduction
relative translation invariability
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Max Pooling

Forward
Max signal

Backward
Gradient transmission to max
signal origin, zero otherwise
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Convolutional Neural Netowkrs - LeNet (1990
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LeNet (1990)
Images 28x28

Very good results on digits recognition !
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Isues

Issues
Learning speed
Exploding or vanishing gradients
Overfitting
Local minima

Limitations
Architecture
Initialization
Computing power
Data
Optimization
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Solutions
activations
mini-batches
batch norm
good weight initialization
better optimization
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Activations

Tangente
hypebolique

Sigmoïde Rectified Linear
Unit (ReLU)

Rectified linear unit
Faster gradient computation
Similar convergence
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Mini-batches

Gradient smoothing
Smoother gradient converges faster.
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BatchNorm
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Changes in the signal dynamic make the model more difficult to optimize: exponential or vanishing
gradients.

Objective: control the signal distribution:

 and  are learnt,  and  are computed (mean and standard deviation).

Learning is faster (iteration number) but slower (statistics computation).
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Weight initialization
Weights have great influence on convergence speed.
They are randomly initialized.

too small weigths: vanishing signal
to high: exploding signal

Conservation of signal properties.
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Weight initialization

Xavier initialization
, weights  and output 

 and  independent:

 and :

finally $ Var(Y) = n Var(X_i) Var(W_i)$ and we chose
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Optimization - Stochastic Gradient Descent

See neural network class
Update rule:  (learning rate )

Unreachable
area

Low probability
area

Low learning rate High learning rate

Start with high
learning rate

High learning rate

Reduce
learning rate

Step decrease
Exponential decrease
Cosine annealing ...
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Optimization - SGD with Momentum
Same idea as mini batch: smooth gradient in the good direction

Momentum
Use previous gradient to ponderate the direction of the new gradient.

 is the momentum.
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ResNet
     

Deep Residual Learning for Image Recognition, He et al. 39



Do not forget the classics
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Data
Representative
Data augmentation
Data normalization
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Data
Train data must be representative of the problem

Train data

Test data

Train data is not
representative
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Data

Data normalization
-Compute mean  and standard deviation  on the train set.
-Normalize input  (train and test):
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Data - data augmentation
Random variations of input parameters (images: lightness, contrast \dots)

train on a more representative set
avoid learning on unwanted features

Lightness / Contrast

Symmetry

Crops
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Problems and partial solutions

Problems
Small amount of data
Low computational power

Solutions ?
Use classical approaches (Perceptron, SVM, ...)
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