1

Deep learning

Alexandre Boulch

www.boulch.eu

IOGS - ATSI

Outline

- Back on last course
- Concept of deep learning
- Convolutional Neural Networks
- Attention and transformers

Back on neural networks

The linear layer

- Also called *fully connected*
 - a neuron is connected to all the inputs
- High number of parameters (\mathbf{W} matrix): |inputs| * |outputs|

Multi-layer perceptron

A stack of linear layers with activation functions (e.g., sigmoids)

Optimization with gradient descent.

Optimization: forward-backward algorithm

Chain rule applied to neural networks

Forward

 $y_2 = f_2(y_1)$ $y_3 = f_3(y_2, \theta_2)$ $\mathbf{y}_1 = f_1(\mathbf{x}_n, \boldsymbol{\theta}_1)$ $\hat{y} = L(y_3, y_n)$

Chain rule applied to neural networks

Chain rule applied to neural networks

Massively data driven approaches

Convolutions and image processing

Multi-layer perceptron (before 1990)

MLP becomes larger and deeper

- difficult convergence
- few data
- very long training
- progessive loss of interest

SVM

- simpe to use
- convergence proof
- fast

Multi-layer perceptron for images

Using a linear layer ?

Lots of weights! (at least one per pixel!)

Multi-layer perceptron for images

Using a linear layer ?

Lots of weights! (at least one per pixel!)

Is it interesting to look at relations in the whole image ?

Look at the whole image

Look at small neighborhoods (where the objects are)

Look at small neighborhoods (where the objects are)

Create neurons that take a patch input

Problem

Translation of the object must lead to same behaviour of the neurons

Problem

Translation of the object must lead to same behaviour of the neurons

Solution

Use the same neuron (i.e. all the neurons of the layer share weights)

Forward

Let (i, j) be the coordinates in the input map.

(k,l) be the size of the patch (size of the kernel, usually k=l)

Then:

$$y_{i,j} = \sum_k \sum_l w_{k,l} x_{i+k,j+l} + b$$

Convolution

Backward weight update

$$rac{\partial y_{i,j}}{\partial w_{k,l}} = x_{i+k,j+l}$$

Let y be the output map and Δy be the gradient coming back:

$$rac{\partial y}{\partial w_{k,l}} = \sum_i \sum_j x_{i+k,j+l}$$

Finally, the update rule:

$$egin{aligned} & w_{k,l} \leftarrow w_{k,l} - lpha rac{\partial y}{\partial w_{k,l}} \Delta y \ & \leftarrow \sum_i \sum_j x_{i+k,j+l} \Delta y_{i,j} \end{aligned}$$

Forward

Same with term to term multiplication:

$$y_{i,j} = \sum_a \sum_b \mathbf{w}_{a,b} \mathbf{x}_{i+a,j+b}$$

Convolution: what do convolutions learn?

Gabor filters.

First layer of AlexNet.

Dimension reduction

With the previous convolution, the output dimension is the same as the output dimension.

For classification: only one label, need for **dimension reduction**.

- convolution stride: do not look at all the pixels of the input (one every two, one every three...)
- Max Pooling

Max Pooling

- dimension reduction
- relative translation invariability

Max Pooling

Forward

Max signal

Backward

Gradient transmission to max signal origin, zero otherwise

Convolutional Neural Netowkrs - LeNet (1990

LeNet (1990) Images 28x28

Very good results on digits recognition !

Isues

Issues

- Learning speed
- Exploding or vanishing gradients
- Overfitting
- Local minima

Limitations

- Architecture
- Initialization
- Computing power
- Data
- Optimization

Solutions

- activations
- mini-batches
- batch norm
- good weight initialization
- better optimization

Activations

Rectified linear unit

- Faster gradient computation
- Similar convergence

Mini-batches

Gradient smoothing

Smoother gradient converges faster.

BatchNorm

Changes in the signal dynamic make the model more difficult to optimize: exponential or vanishing gradients.

Objective: control the signal distribution:

$$y^{l*} = rac{y^l - \mu}{\sqrt{\sigma^2 + \epsilon}} \gamma + eta$$

 γ and β are learnt, μ and σ are computed (mean and standard deviation).

Learning is faster (iteration number) but slower (statistics computation).

Weight initialization

Weights have great influence on convergence speed. They are randomly initialized.

- too small weigths: vanishing signal
- to high: exploding signal

Conservation of signal properties.

Var(Y) = Var(X)

Weight initialization

Xavier initialization

 $X \in \mathbb{R}^n$, weights W and output $Y \in \mathbb{R}$

$$Y = W_1 X_1 + W_2 X_2 + \dots + W_n X_n$$

 X_i and W_i independent:

$$Var(W_iX_i)=E[X_i]^2Var(W_i)+Var(X_i)Var(W_i)+Var(X_i)E[W_i]^2$$

 $E[X_i]=0$ and $E[W_i]=0$:

 $Var(W_iX_i) = Var(X_i)Var(W_i)$

finally \$ Var(Y) = n Var(X_i) Var(W_i)\$ and we chose

$$Var(W_i) = rac{1}{n}$$

Optimization - Stochastic Gradient Descent

See neural network class

Update rule: $w_{t+1} = w_t + \alpha \Delta w$ (learning rate α)

- Step decrease
- Exponential decrease
- Cosine annealing ...

Optimization - SGD with Momentum

Same idea as mini batch: smooth gradient in the good direction

Momentum

Use previous gradient to ponderate the direction of the new gradient.

$$egin{aligned} v_t &= \gamma v_{t-1} + lpha \Delta w \ w_t &= w_{t-1} - v_t \end{aligned}$$

 γ is the momentum.

ResNet

Do not forget the classics

Data

- Representative
- Data augmentation
- Data normalization

Data

Train data must be representative of the problem

Data

Data normalization

-Compute mean μ and standard deviation σ on the train set. -Normalize input I (train and test):

$$\hat{I} = \frac{I - \mu}{\sigma}$$

Data - data augmentation

Random variations of input parameters (images: lightness, contrast \dots)

- train on a more representative set
- avoid learning on unwanted features

Symmetry

Problems and partial solutions

Problems

- Small amount of data
- Low computational power

Solutions ?

• Use classical approaches (Perceptron, SVM, ...)