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Abstract. The ability to predict the ionosphere activity is of interest for
several applications such as satellite telecommunications or Global Nav-
igation Satellite Systems (GNSS). A few studies have proposed models
able to predict Total Electron Content (TEC) values of the ionosphere
locally over measuring stations, but not worldwide for most of them.
We propose a method using Deep Neural Networks (DNN) to predict a
sequence of global TEC maps consecutive to an input sequence of past
TEC maps, by combining Convolutional Neural Networks (CNNs) with
convolutional Long Short-Term Memory (LSTM) networks. The numer-
ical experiments show that the approach provides significant improve-
ment over methods implemented for benchmarking and is competitive
with state-of-the-art methods while providing global TEC predictions.
The proposed architecture can be adapted to any sequence-to-sequence
prediction problem.
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Fig. 1: Ground-truth (left) and predicted (right) TEC map example

1 Introduction

Ionospheric activity is mainly measured by the Total Electron Content (TEC),
which is the total number of electrons in the ionosphere integrated along a ver-
tical path above a given location. It is expressed in TEC Units (1 TECU =
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1016 el/m2), usually ranging from a few units to one hundred TECU. Dur-
ing periods of high ionospheric TEC levels, the services provided by satellite
telecommunication systems and Global Navigation Satellite Systems (GNSS)
may be deteriorated due to changes in the paths of transionospheric radio waves
inducing significant bitrate reduction and positioning errors [1, 2]. As a conse-
quence, forecasting TEC globally (i.e. worldwide) in the short term (up to two
hours) or in the longer term (a few days) increases the ability of the users of
these services to evaluate, as one example, data loss or mispositioning risks in
operations planning.

Several services relying on measurements provided by GNSS ground net-
works [3] exist to address this issue at a global scale, i.e. forecasting TEC values
worldwide. CTIPe, an experimental tool implementing complex physics models
[4] developed by the US Space Weather Prediction Center, produces global fore-
casts 30 minutes ahead of real-time. In Europe, the ESA Ionospheric Weather
Expert Service Center combines products from different national services to pro-
vide global and regional 1-hour TEC forecasts. However, the records of the input
data and forecasts are not published.

In the literature, several methods have been published to predict TEC a few
minutes to several days ahead above specific stations using time series analysis
and statistical methods [5–9]. Among these, a few provide a reconstruction of
a small area [10, 11] with methods such as Bezier surface-fitting or Kriging.
Several works are based on artificial neural networks [10, 12, 13], but they only
focus on local stations. In order to make a prediction at a regional or global scale
with these approaches, one model for each location must be adapted. In [14], a
global analytical TEC model is proposed to address the global forecasting issue,
using open source TEC data from the Center for Orbit Determination in Europe
(CODE). This model is intended to apply to any temporal range, without relying
on a record of TEC values.

In this paper, the objective is to predict global TEC maps 2 to 48 hours
ahead of real-time. The proposed approach is entirely based on recurrent neu-
ral networks, taking advantage of convolutional and Long Short-Term Memory
(LSTM) networks. Deep Neural Networks (DNN) have the advantage to enable
complex modeling of large input data, such as global TEC maps in this case,
with little or no prior knowledge.

The paper is organized as follows: Section 2 presents the approach used in this
paper, including the data, the proposed network architecture and the training
procedure; Section 3 discusses the results of our numerical experiments on TEC
prediction; and finally the limits and perspectives of the proposed approach are
discussed in Section 4.

2 Proposed approach

The objective is to design a neural network architecture able to be fed with an
input sequence of a number of maps and to output the next 48 hours of TEC
maps.
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2.1 Datasets

Open source TEC data from the CODE is used in this study. Two datasets of
TEC maps are available: Rapid TEC maps, which are accessible quicker, and
Final TEC maps, more precise. In this study, final TEC maps are used with a
5° × 2.5° resolution on longitude and latitude and 2 hour temporal resolution,
covering all latitudes and longitudes. One pixel in these maps represents the
vertical TEC at this point.

Data from 1/1/2014 to 5/31/2016 is used for training, and data from 7/1/2016
to 12/31/2016 for testing. Splitting the data into sequences corresponding to five
consecutive days allows for convincing results in terms of convergence and in the
test procedure (see Section 3). Data is loaded as a sequence of 60 maps (one
map every two hours): the first 36 maps (i.e. 3 days) are fed to the network, the
last 24 maps (i.e. 48 hours) being the prediction targets. This amount of input
is sufficient to understand the context, and more information would lead to an
overuse of the network’s neurons (several neurons being dedicated to process
out-of-date data).

2.2 Preprocessing

In order to fit the data to the input of the network and scale the dynamics of the
TEC maps, the data undergoes feature normalization and is resized to 72 × 80
pixels. To prevent the algorithm from focusing on deterministic phenomena that
can be easily isolated, the frame of reference is also changed from Fixed-Earth
to Heliocentric, so that the effect of Earth’s rotation is no longer visible to the
DNN architecture. The transformed data is then the input of the network.

However, the resulting TEC maps appear to have a residual low spatial fre-
quency, 24h-periodicity due to the Earth’s magnetic poles, distinct from the
geographic poles. In order to avoid learning the residual periodicity, we choose
the target T of the neural network to be the difference between the true TEC
map I and a gaussian filtered TEC map at t−48h Iblurredt−48h , so that the subtracted
component can always be computed from the input sequence. The gaussian filter
is applied in order to remove high frequency variations from the past map.

Tt = It − Iblurredt−48h (1)

2.3 Network architecture

Deep Neural Networks (DNN) taking as input a sequence of images to output e.g.
audio description or video labels have become a common topic in the past years
[15]. However, sequence prediction problems in which both the inputs and targets
are a sequence of images have barely been handled. In [16], the authors propose
an architecture for precipitation nowcasting and introduce a convolutional LSTM
structure.

To give an outline, the proposed approach uses Convolutional Neural Network
(CNN) layers [17] to extract spatial features from an input TEC map. The
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resulting features are then fed to a convolutional LSTM [16], derived from the
fully-convolutional LSTM [18]. This enables to handle spatially structured data.
Deconvolutional layers are then fed with the output of the convolutional LSTM
in order to generate the residual TEC map corresponding to the next time step.

Fig. 2 presents the network architecture. To go into the details, we first
explain the architecture designed to predict one TEC map (2 hours ahead of real-
time), represented as the dotted black rectangle in Fig. 2. The network is built as
the repetition of a column composed of three modules: the encoder (four 3× 3
convolutions with Rectified Linear Unit (ReLU) in between), a convolutional
LSTM cell (with a 3×3 convolution operation and ReLU) and a decoder (four
3× 3 deconvolutions and ReLU) in order to produce an output of the same size
as the input. The columns are cascaded to enable the temporal information to
go through the network, each column handling a single TEC map. The ”many-
to-one” architecture (dotted box in Fig. 2) is the starting point of the final
architecture.

In order to generate a sequence of TEC maps, we derive the ”many-to-one”
architecture to obtain a ”many-to-many” network able to output 48 hours of
TEC maps. The same columns as in the ”many-to-one” part are reused. The
prediction process is achieved by recursively feeding the next column of the
network with the sum of the last prediction and the filtered TEC map at t−48h
(see Subsection 2.2). The cost function is finally summed over the differences
produced by the successive prediction columns.

...

......

+ + +

......

Inputs (3 days = 36 maps)

Outputs (2 days = 24 maps)

Blurred maps from 48h ago

Encoding

ConvLSTM

Decoding

Many − to− one

Fig. 2: Network architecture: encoders (green), convolutional LSTM cells (yel-
low), and decoders (red)

This architecture is inspired from the Convolutional Autoencoders [19] with
a LSTM inserted in between. It is preferred to other well-known architectures
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such as Fully Convolutional Autoencoders or Deep Belief Networks [20] which
cannot handle 2D data. This approach is also preferred to three simpler methods
for performance reasons:

– Many-to-one: the loss is computed only over one map and the sequence
is recursively forecast from the previously predicted map. It leads to com-
petitive results for 2h prediction but diverges quickly (see the results in
Subsection 3.1).

– Direct TEC map prediction: this approach performs poorly. As a compari-
son, taking the map corresponding to t− 48h as a prediction leads to better
performance (average RMS of 2.810 against 2.353 for the selected architec-
ture).

– Difference maps as input : this method does not perform better than the
selected approach (average RMS of 2.918 against 2.353 for the selected ar-
chitecture).

Cost function The cost function for the DNN training is the pixel-wise `1-norm
between the predicted maps and the targets, summed with a measure of relative
error as a regularizing factor in order to improve the performance in areas where
the TEC level is low. The `1-norm is chosen instead of `2: the `1-norm is known
for capturing more details whereas the `2-norm tends to smooth the results. In
this study, we obtained an average RMS of 2.524 with `2-norm and 2.353 with
`1-norm for the selected architecture. The cost function L is given as:

L =
∑
t∈S

wt

∑
i∈Mt

(
|P t

i − T t
i |+

|P t
i − T t

i |
T t
i

)
(2)

with S the sequence of TEC maps, wt the weight at time t, Mt the TEC
map at t, P the predicted map and T the ground-truth map, where t indexes
time and i is the map pixel index.

Different weight arrays [wt] are considered, corresponding to different learn-
ing strategies: e.g. putting more weight on the first predicted TEC maps, argu-
ing that the accuracy of the following predictions depend on them. In this study
three weight profiles are taken into account: uniform weights over the 48-hour
sequence; uniform weights on a 24h-window; linear decreasing weights over the
48-hour sequence. These weight arrays enable a better control over the temporal
error and a possible improvement of performance at several prediction horizons.

Data loading into the network The sequences are loaded chronologically
from the training set, from 1/1/2014 to 5/31/2016, and reloaded again from the
beginning of the dataset until convergence in training. This sequential sampling
approach is more efficient than random sampling in this study (average RMS of
3.311 against 2.353 with the sequential sampling).
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3 Results

Once it has been trained, the network can be fed with any 3-day sequence from
the test set and produce 2-day forecasts consecutive to this sequence.

Baselines Two simple prediction methods are implemented for benchmarking:

– The 3-day mean prediction (or constant prediction): the mean map computed
over the three days of input data is the prediction result for the next 48 hours
of data.

– The periodic prediction: the predicted map at time t is exactly the map at
t−48h. This exploits the 24 hour-periodicity of TEC maps (see Section 2.2).

The three alternative architectures presented in Subsection 2.3 are also con-
sidered as baselines.

We finally compare our method to previous works [5, 8, 12, 14] in Subsec-
tion 3.3.

Performance criterion The RMS error is used to compare the performance
of the different methods. Other performance criteria may be taken into account,
such as the Mean Absolute Percentage Error (MAPE) which is used in several
related works to evaluate the forecasts [6, 9]. However, MAPE is not suited to
this study since we predict global TEC maps, which include low-level TEC areas
(e.g. Earth poles) where a small estimation deviation leads to very high MAPE
(see discussion in Section 4).

3.1 Quantitative results

The RMS errors averaged for each prediction horizon for the three weighting
profiles and for the baselines are summarized in Table 1 for the period from
10/20/2016 to 12/20/2016. In any case, the proposed approach performs clearly
better than the 3-day mean prediction, equal or better than the periodic pre-
diction at all prediction horizons, and is also significantly better than the three
alternative architectures presented in Subsection 2.3.

The global generic model proposed in [14] achieves a mean RMS deviation
of 7.5 TECU at any given time, whereas the approach proposed in this article
performs significantly better for 48-hour ahead forecasting (2.4 TECU in average
for the uniform weighting).

Decreasing weighting is the best for the first prediction horizons, most likely
because it has the bigger weights at the beginning. The weights emphasizing
only the first 24 hours provide good results until 24 hours as well, and then the
uniform weighting takes over the other two, since no other weight arrays focus on
the last part of the forecasting range. Combining weight arrays enables a good
overall optimization of the error.

Direct TEC map prediction does not perform as well as the selected architec-
ture. The network may have to dedicate most of its weights to learn the periodic
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Table 1: Mean RMS of models at a given prediction horizon over period from
10/20/2016 to 12/20/2016

Method 2h 6h 12h 18h 24h 30h 36h 42h 48h

Baselines:
3-day mean 3.072 3.102 3.121 3.140 3.173 3.217 3.241 3.260 3.291
Periodic (48h) 2.518 2.516 2.514 2.514 2.510 2.509 2.509 2.508 2.505
Direct TEC map 2.712 2.639 2.601 2.575 2.728 3.001 3.003 2.963 3.142
Difference as input 2.447 2.800 2.904 2.898 2.915 2.958 3.007 3.041 3.041
Many-to-one 1.996 3.055 5.356 5.658 7.240 7.586 8.671 8.926 9.427

Selected architecture:
- Uniform weighting 2.050 2.265 2.254 2.256 2.331 2.434 2.459 2.475 2.490
- Decreasing weights 1.987 2.239 2.248 2.258 2.409 2.585 2.635 2.647 2.674
- Only first 24h 2.078 2.195 2.197 2.214 2.297 2.486 2.513 2.500 2.498

component and fails to catch transformations of interest. Similarly, giving the
difference maps as input to the network does not improve the performance. The
reason might be that a new temporal dependency is induced while subtracting
the past maps, making it harder to extract the relevant phenomena.

Considering the record of TEC values in order to forecast 48 hour of TEC
maps, with any weighting, helps improving over a generic model such as [14]
which does not take advantage of the last TEC data.

3.2 Performance over the test period

The RMS value at 12 hours ahead of the input sequence is evaluated for sequences
in the test period from 10/01/2016 to 12/31/2016 (see Fig. 3).

RMS errors are stationary after 10/20/2016. They reach an upper point at
7-8 TECU around 10/15/2016 (see Fig. 3). However, during the day 10/17/2016,
the proposed algorithm is not outperformed by the periodic prediction.

The algorithm is designed to predict residual differences between TEC maps
separated by 48 hours. In this case, there is a significant difference between
the maps on 10/15/2016 and 10/13/2016. Such perturbations may be linked to
external phenomena such as solar events or geomagnetic storms (discussed in
Section 4).

3.3 Indicative comparison to local prediction methods

As an attempt to compare to previous works on TEC forecast, Table 2 presents
a synthesis of the performance obtained in three related studies and an indica-
tive comparison with the results presented in this paper. The comparison is
only indicative since these works differ by their prediction horizons or by the
considered areas and since several studies focus on one or a few specific measur-
ing stations instead of producing a worldwide TEC prediction. The last column
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Fig. 3: RMS value for 12 hours ahead forecast over whole test period (bottom)
and zoom on a disturbed period (top)

shows the RMS obtained with the proposed approach, computed as the mean of
RMS values at the latitude(s) of the station(s) used by the cited papers.

Table 2: Results of previous works

Reference Description RMS (ref) RMS (proposed)

[5] Chunli D., Jinsong P.
1 day forecast, 22°N in
China region (2008 data)

1.45 2.049

[12] Huang, Z., Yuan, H.

24h forecast, three sta-
tions at latitudes 39.61°N,
30.53°N, 25.03°N (2011
data)

≤ 2 1.936

[8] Niu, R. et al.
Forecast of global mean
TEC value (0 to 48h ahead
(2012-2013 data)

3.1 0.800

The obtained results are competitive with state-of-the-art models. To put
this in perspective, one should take into account the experimental periods of
these studies. Periods from 2011 to 2016 are considered as an active period for
the ionosphere due to solar activity, whereas 2008 is a very calm year. Good
performance is easier to achieve in calm periods, as explained in [6]. The data
used in this study is taken from 2014 to 2016, which makes the results from [12]
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and [8] comparable. On the other hand, the better results of [5] are emphasized
by the fact that the experiments are done during a calm year.

The proposed approach provides an accurate mean TEC value, significantly
improving the results from [8]. In this study, giving more detailed data as input
(i.e. a global TEC map) may indeed have helped to produce a better prediction
than the one obtained by extrapolating from TEC mean values alone in [8].

4 Limits and perspectives

The presented method overcomes the baseline methods and is competitive with
state-of-the-art local approaches measuring the RMS error.

MAPE (i.e. relative error) is mentioned in Subsection 3 as an alternative
to RMS to evaluate the forecasts. Since global TEC maps are produced, the
comparison with papers that use MAPE to evaluate local predictions is irrelevant
as things stand. In this paper, we prioritized the achievement of a good global
minimization with the `1-loss rather than a good relative error. In order to
investigate further the proposed approach, we could consider minimizing the
MAPE instead of the `1-loss. To avoid being over-influenced by ill-conditioned
MAPE values, North and South poles (i.e. areas where TEC values are very
small) could be cropped from TEC maps, so that the remaining TEC values
are similar to the TEC values considered in [6] and [9], making fair comparison
possible in future works.

During the implementation, trying to increase the complexity of the DNN by
adding parameters and/or convolutional layers to the network did not improve
the performance. Either another network is more appropriate to learn more
complex dependencies, or there are dynamics in TEC evolution that can not be
learned from TEC maps alone. For example magnetosphere or solar particles can
significantly impact the ionosphere [21, 22] and its evolution. As a consequence,
two possibilities are offered to try to improve performance: train another network
architecture such as U-net architecture [23], or include solar information in the
input to investigate the capacity of a DNN architecture to learn the dependency
between TEC levels and solar activity. Both options require learning from a
larger training set (data from CODE is available from 1998 to today, whereas
only data from 2014 to 2016 is used in this study) in order to have more data
from perturbation periods for the network to infer the right behavior.

5 Conclusion

A promising model able to forecast global TEC maps 2 to 48 hours ahead of
real-time is proposed. This model takes advantage of Deep Neural Network ar-
chitectures with CNNs and LSTM networks. The proposed approach is able to
output a sequence of global TEC maps with comparable or smaller errors com-
pared to single-station prediction models. In the specific case of [8], the global
mean TEC value can also be significantly more accurately forecast.
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First, the proposed approach forecasts global TEC maps as opposed to local
TEC estimates proposed in other published works. Moreover, our method enables
range forecasting from 2 to 48 hours ahead of real-time, which is a further horizon
than the predictions provided by existing operational services.

This method opens new possibilities for using Deep Neural Networks to fore-
cast global TEC maps: the proposed approach can be adapted to other needs
such as forecasting a specific region or minimizing another criterion. The pre-
sented architecture can also be easily extended to other sequence prediction
problems in which both the inputs and prediction targets are sequences of im-
ages.
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