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ABSTRACT

Designing specific index for a some remote sensing applica-
tions require a large research effort not scalable to the multi-
tude of applications.

Inversely, using off the shelf deep learning pipeline could
be good enough for some applications.

We describe off the shelf deep learning application on
the 2017 data fusion contest (IEEE-IGARSS) for local cli-
mate zone estimation. While being completely non expert
to local climate zone estimation, and while having only few
meta parameters, these pipelines reach honorable scores on
this dataset compared to hard to tune winner pipeline of the
challenge.

Index Terms— deep learning, remote sensing

1. INTRODUCTION

The popularization of remote sensing images (e.g. the free
availability of sentinel images) could allow a rupture for large
remote sensing applications including climate observation,
biomass estimation, drought monitoring... However, seeing
the large spectrum of possible applications of remote sensing
images, we can wonder about the research effort to correctly
extract information from these new data. Designing specific
index to handle specific problem may not be an scalable way
to take full advantages of all these newly available data.

Inversely, we claim that using off the shelf deep learning
pipeline could be good enough for some applications.

To argue our statement, we present here experiments done
on the data fusion contest 2017 (IEEE-IGARSS). Data fusion
contest (DFC) are a set of challenges of the remote sensing
community. The 2017 challenge is about predicting Local
Climate Zones (LCZ) from training cities to unknown cities
[1]. LCZ aims to offer a typology of both landscape and urban
locations designed to study heat island and heat propagation
in cities. The LCZ of a location is completely defined by it
landscape/urban configuration e.g. high dense metallic build-
ing will lead to LCZ named dense high rise.

We show that off the shelf deep learning pipelines can
reach honorable scores for LCZ estimation (compare to the
state of the art) without requiring careful tunning.

In the context of the DFC2017, provided inputs for do-
ing this LCZ prediction are remote sensing images and crow

Fig. 1. Landsat 8 data (band 4) and predicted LCZ map on
the test city of Amsterdam.

based map: 9 bands landsat at a resolution of 100m with mul-
tiple images per city, 9 bands sentinel2 images at 100m, open-
streetmap information available for the selected cities (raster-
ized at 5m) and not registered 9 bands sentinel2 images at
5m.

Currently, even before the data fusion contest, there were
works on LCZ estimation from public data (e.g [2]). With the
challenge, there were a large research effort on this problem
[3, 4, 5, 6]. In [3], only landsat and osm are handled. Both
basic and specific features are extracted from images. Basic
features are mean-variance. Specific ones are mostly built on
infrared measure. Thus, a first step of atmospheric correction
is performed on landsat images to improve infrared images.
Then well known normalized difference index (we will call it
ndi) like NDVI, NDWI, MNDWI, NDBI, BSI and WRI (see
[7] for a brief review) are extracted from images. In addi-
tion, morphological profiles are extracted by combining osm,
NDVI and morphologic operator. Then, two kind of ensemble
classifier are trained on these features.

Seeing [2, 3] ([4, 5, 6] are currently not available), we
can argue that most of these LCZ papers either needs care-
ful tuning or use very specific index designed especially for
LCZ. Here, we offer instead very generic to off the shelf deep
learning pipelines to infer LCZ from multi modal data.



Table 1. Results of the leave one city out
method berlin HK paris rome sao paulo average

images (1vsall) 42% 25% 74% 22% 43% 38%
osm (1vsall) 47% 43% 59% 33% 21% 36%

images + osm (1vsall) 53% 51% 72% 30% 54% 48%
cnn + svm (raw + osm) 50% 52% 73% 33% 68% 51%

images + ndi + osm 51% 53% 73% 34% 68% 52%
cnn + svm (ndi + osm) 57% 53% 67% 48% 52% 54%
CNN Pyramid Pooling 71% 67% 69% 51% 80 % 67.6%

Fig. 2. scheme of the cnn+svm pipeline.

2. DEEP LEARNING FOR LCZ

2.1. CNN + SVM

The first pipeline is inspired from [8]. It is simply built by
extracting a set of feature maps directly or with convolutional
deep neural network (CNN) and using support vector machine
(SVM) to perform pixelwise classification (precisely libsvm
with 1vs1, linear kernel and default parameter [9]). Notice
that this pipeline has 0 parameter, and thus, is a good example
of off the shelf pipeline (see figure 2). Code is available here
https://github.com/achanhon/CNN SVM for DFC2017.

Raw images are used directly as features. For landsat data,
we compute the mean and variance maps for each channel, in
such a way that we exploit the multiple acquisitions. Then, we
concatenate all provided bands for both landsat and sentinel
leading to a 27 image based features per 100m pixel.

Additional features are generated using VGG16 [10] ini-
tialized imagenet weights on OSM data. We compute an ad
hoc mask per city from osm data: it is formed using build-
ing, green area from landuse, and road (pixel value is either
0 or 255 depending on the presence of the item in osm). The
features are extracted at several layers and rescaled to 100m
resolution. In our experiment, osm typically provides 512 fea-
tures per 100m pixel. Notice that, we do not train the cnn from
an imagenet initialization, instead we just use the pretrained
version without adjustment in the convolution weight (only
small change have been done on the pooling structure to take

into account the difference in resolution between images and
osm).

2.2. Late and cascaded fusion with CNN

We used OSM and sentinel2. We design a specific networks
inspired from U-Net [11] for each data sources, each with
more pooling than upsampling as data are more resolved than
label maps. Then, we concatenate resulting maps and forward
it in a second network.

In late fusion, this second network is just a series of con-
volutions (since convolutions does not reduce a size of feature
maps, we can use them directly to predict the labels). It is a
late fusion because each modality is processed independently
and only high level representation are combined at the top of
the network.

We also evaluated cascaded fusion in which the second
network is large. Two architecture have been tested for this
second network.

1. U-Net (again): we concatenate upsampled lower layer
with top ones to predict the labels.

2. Pyramid Pooling like: Inspired from [12], we imple-
ment a network with different levels of pooling along
with upscaling and concatenation plus a final convolu-
tion to get the prediction.

2.3. Early fusion with CNN

The final approach uses all the data available in the challenge
with additional Sentinel 1 data. The Sentinel 1 composite (S1
composite) is a three channel composite: VV polarization for
ascending acquisition, VH for ascending and descending and
VV for descending. The final product is the mean over the
year 2016.

The CNN architecture used in this section is based on Seg-
Net [13]. We set up an encoder for each input type (Sentinel
1 and 2, Landsat 8 and OSM). The decoder input is the con-
catenation of all coded signals. The reference signal (the one
use for unpooling operation) is Landsat 8. Compared to the
late fusion (previous section), we merge features instead of
activations that why we can speak of early fusion. See figure
3 for visual representation of the 3 different CNN pipelines.



Fig. 3. Visualization of the 3 different cnn pipelines.
This is a schematic visualization and not the real architectures of the 3 pipelines. In all these 3 pipelines, weight are optimized
by stochastic gradient descent (and not just restored from pretrained model). Training is done in classic fashion: forwarding

the input, we get an output which has the same shape as expected ground truth ; a loss measures the distance between the
produced output and the ground truth resulting in a gradient which is computed by backpropagated across the network and

used to update all weights.

Table 2. Results on the test database
method test

cnn + svm (raw + osm) 58%
cnn + svm (ndi + osm) 57%
fusion Pyramid Pool. 52%

Early fusion 56.6 %
Early fusion additional cities 64.3 %

We trained two models: one on the cities of the DFC2017
training set and, in order to estimate the influence of the train-
ing data set size, one with additional cities: Dublin, Houston,
Sydney, Vancouver and Warsaw. The ground truth associated
with these cities is denser but with poor quality: coarse areas
and noised labels.

3. EXPERIMENT

Following the rules of the 2017 data fusion contest, we evalu-
ate the quality of the LCZ estimation by measuring the pixel
wise accuracy (this is so a semantic segmentation problem).

The server evaluation results are presented in table 2 (no-
tice that inspired from [3], we both use raw image and ndi in
cnn+svm).

In addition, to the server evaluation, we also provide a
leave one city out protocol: all training cities except one are
used to train the model which is then applied to the excluded
city, this operation being done for all cities. Leave one city out

results (when available) are detailed in table 1 with an average
result. In order to penalize, very unstable results across cities
we weight the worse accuracy by a factor 2 in the average
result.

4. DISCUSSION

The main result is that these off the shelf pipelines compare
honorably, in our opinion, to hard to tune state of the art of
LCZ estimation which is between 69 to 74% (see the output
of [1]).

Indeed, due to small size of the ground, heavy CNN mod-
els like late or cascaded fusion strongly overfits and thus are
overcome by models consisting in training only the SVM on
the test set. This is consistent with the idea that deep learn-
ing is mainly relevant when large amount of data/ground truth
is available. However, even in context with small amount
of data, using pretrained cnn can provide interesting result
(cnn+svm still achieves 58%). And, the required size of the
dataset may not be that high: in our experiment, additional
training data consisting in only 4 new cities gives a real boost
in performance while being corrupted training data. Thus, we
can be not so worry about preventing the model from over-
fitting.

Finally, we notice that the osm and image data are very
complementary: both images and osm alone reach low perfor-
mance probably because some classes are not distinguishable
using only one modality (water is not present in osm resulting
in a complete impossibility to predict at least this classe) and



image may not be sufficiently resolved to infer density and
thus elevation of building without osm. By the way, it is still
not clear is image+osm are sufficient to distinguish between
some classes like middle rise and low rise.

5. CONCLUSION

In our opinion, the main result of this work is that our off the
shelf pipeline reach honorable results seeing the state of the
art without requiring large tuning.

Off course (may be hopefully) designed index and algo-
rithm performs still better than off the shelf deep learning (at
least in our experiment ndi largely increases performance sta-
bility over different cities). But, this example highlights the
interest of off the shelf deep learning pipeline to take advan-
tage of newly available remote sensing image.

Thus, we argue that off the shelf deep learning pipelines
may be more and more present for remote sensing applica-
tions.
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