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Building Information Models

The BIM is a digital representation of a building

Building Information Modeling (BIM): 
Benefits, Risks and Challenges
Salman Azhar et al. (2008) 
 

Model interoperability in building
information modeling 
Steel, James et al. (2010) 
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Building Information Model
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Renovation of old buildings

● Huge market
(e.g., improvement 
of thermal 
performance)

● No digital model
● Wrong or inexisting 

blueprints
http://www.agrconstruction.fr/
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Data

● Photogrammetry
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Data

● Photogrammetry
● Depth sensors
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Data

● Photogrammetry
● Depth sensors
● Lasers
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Reconstruct and semantize surfaces

Building materials:
● Wall: aerated concrete
● Window: double glazing
● Window frame: aluminium
● Door: wood
● ...

Heat capacity:
● ...

+
Geometry

Semantics
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Pipeline

Point cloud

Digital model

Structure and
information
enrichment
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Pipeline
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Pipeline

Normal
estimation

Point cloud
Point cloud +
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Pipeline

Normal
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Primitive
detection
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Pipeline
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extraction
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Primitives Surface

Global geometric information
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Normal
estimation Introduction

● Local estimation of the 
surface orientation

Robustness to:

noise

outliers

sharp edges

anisotropy

Speed
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Normal
estimation Introduction

● Local estimation of the 
surface orientation

● Robustness to

– noise

– outliers

– sharp edges

– anisotropy
● Speed
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Normal
estimation Previous work

● Regression
– Planes: Hoppe et al. Surface reconstruction from unorganized 

points. SIGGRAPH, 1992.

– Jets: Cazals & Pouget. Estimating Differential Quantities using 
Polynomial fitting of Osculating Jets. Symposium on Geometry 
Processing, 2003.

● Voronoï diagrams
– Dey and Goswami. Provable surface reconstruction from noisy 

samples. Comput. Geometry, 2006.

● RANSAC
– Li et al. Robust normal estimation for point clouds with sharp 

features. Computers & Graphics, 2010.
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Normal
estimation Previous work

Regression 
Planes

Regression 
Jets

Voronoï  
diagrams RANSAC

Noise X X X

Outliers X
Sharp 

features X X

Anisotropy X

Speed X X X



29

Normal
estimation Randomized Hough transform

Generate hypotheses:
pick triplets of points
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Normal
estimation Randomized Hough transform

Generate hypotheses:
pick triplets of points

Space
change

Vote in a spherical
accumulator

Select the most
probable bin

Generate
normal

How many
hypotheses must

be generated ?
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Normal
estimation Robust lower bound

● Filled accumulator of M bins:
empirical approximation of a probability distribution 

● Estimate the quality of the approximation. 

T*, minimum number of triplets to pick such that :

δ

δ: deviation tolerance
α: confidence level
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Normal
estimation Robust lower bound

● Filled accumulator of M bins:
empirical approximation of a probability distribution 

● Estimate the quality of the approximation. 

T*, minimum number of triplets to pick such that :

● From Hoeffding inequality:
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Normal
estimation Results 

Cazal & Pouget (2003)

Li & al (2010)

Ours

10°

Color code
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Normal
estimation Speed and accuracy

● Same 
complexity

● As accurate 
and faster 
than
[Li et al. 2010]

Ours

Time (s), logarithmic scaleNote: [Dey & Goswany 2006] 
does not appear on the 
graphic, because the method 
is not robust to noise

Cylinder, 0.2% noise, 200k points 
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Normal
estimation Visuals results: laser scans
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Normal
estimation Visual results: photogrammetric data
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Normal
estimation Conclusion

● Robust normal estimator based on Hough 
Transform
– accurate

– robust to noise, outliers, sharp edges and 
anisotropy

– fast

● Limitations
– smooth normals on wide angles
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Pipeline
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Cluster level information

Pipeline

Surface
extraction

Normal
estimation

Primitive
detection

Point cloud +
Normals

Primitives

Surface
semantization
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Schnabel & al (2007)

Primitive
detection

Extraction

RANSAC

Region growing

Fusion
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Primitive
fusion Practical example

Over-segmentation



46

Primitive
fusion Practical example

Over-segmentation



47

Primitive
fusion Practical example

Over-segmentation
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Primitive
fusion Existing methods

● Tolerance on parameters
– 3 for a plane (2 for orientation, 1 for distance)

– 4 for a sphere (3 for position, 1 for radius)

– …

● A contrario criterion only for planes in depth 
maps [Bughin, E. 2010.]
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Primitive
fusion Existing methods

● Tolerance on parameters :
– 3 for a plane (2 for orientation, 1 for distance)

– 4 for a sphere (3 for position, 1 for radius)

– …

● A contrario criterion only for planes in depth 
maps [Bughin, E. 2010.]

Our method:
– One single indicator: distribution of distances to 

primitive
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Primitive
fusion Criterion for fusion
● Two surfaces      and     , associated with point sets   

     and 
● Distance function from point to primitives
● Define two sets:

● If                then 
● Statistical tests

– Mann-Whitney

– Kolmogorov-Smirnov
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Primitive
fusion Results
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Primitive
fusion Primitive fusion
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Primitive
fusion Results

Increasing the level of smoothing
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Primitive
fusion Results
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Smoothing level: 0.01
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Primitive
fusion Results

Increasing the level of smoothing

Smoothing level: 0.02
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Primitive
fusion Results

Increasing the level of smoothing

Smoothing level: 0.03
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Primitive
fusion Conclusion

● Criterion for primitives fusion
– robustness to noise

– support for any primitive type (plane, cylinder...)

– intuitive user control on merging

● Limits
– empirical relation between noise and fusion 

distance
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Pipeline

Normal
estimation

Primitive
detection

Surface
extraction

Primitives Surface

Global geometric information

Surface
semantization
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Surface
extraction Objective

Automatic surface reconstruction from laser scan
– watertight without self intersection

– piecewise planar

– extended plausibly in hidden region
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Surface
extraction Objective

Automatic surface reconstruction from laser scan
– watertight without self intersection

– piecewise planar

– extended plausibly in hidden region
with support for data anisotropy
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Surface
extraction Previous work

● Smooth priors
– e.g. Poisson reconstruction

● Voxelisation
– biased, expensive

● Delaunay tetrahedralization
– visible regions only

● Plane adjacency
– visible near adjacency

● Manhattan world assumption
– too restrictive: 3 directions only
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Surface
extraction Chauve et al.

● Plane arrangement
– Visible planes

– Hidden plane hypotheses (called ghosts)

● Binary labelization of resulting 3D cell complex (empty or full)
– Surface minimization, graph-cut optimization

● Advantages
– watertight and non self-intersecting surfaces

– preservation of sharp edges

– extension of primitives far in hidden regions

– more plausible surfaces thanks to hidden plane hypotheses

A.-L. Chauve, P. Labatut, J.P. Pons
Robust piecewise-planar 3D reconstruction and completion from 
large-scale unstructured point data. CVPR 2010
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Surface
extraction Chauve et al. (2)
● Limitations

– wrong primitive 
borders with 
anisotropic 
point clouds

● Our method
– determination of 

borders in laser depth 
image

α-shape
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Surface
extraction Chauve et al. (3)
● Limitations

– missing plane 
hypotheses

● Our method
– generation of parallel 

ghosts (for thin objects 
without detected 
thickness)
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Surface
extraction Chauve et al. (4)
● Limitations

– Holes and truncated 
corners due to area 
minimization

● Our method
– Edge length and 

corner number 
minimization
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Surface
extraction Overview of the method

● Laser point cloud

Primitive extraction

Ghost generation

Volume partition using 
a plane arrangement

Binary partition using 
linear programming

Surface extraction
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Surface
extraction Overview of the method

● Laser point cloud
● Primitive extraction
● Ghost generation
● Volume partition using 

a plane arrangement
● Binary partition using 
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● Surface extraction
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Surface
extraction Partition

● Partition the volume 
with a plane 
arrangement

● Labelization of each 
cell as empty or 
occupied
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Surface
extraction Energy formulation

● Energy

Data term

Penalizes a surface 
disagreeing with 

observations 

Regularization term

Penalizes a complex 
surface in the 
hidden areas
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Surface
extraction Data term
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Surface
extraction Data term

Penalize if   x
p+

 =  x
p-
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Surface
extraction Data term

Penalize if   x
f+

 ≠  x
f-
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Surface
extraction Edge and Corner Regularization
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Surface
extraction Edge and Corner Regularization

Shorter edges
Smaller corner number Smaller area

Smaller area
Shorter edges

Smaller corner number
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Surface
extraction Regularization term

Area penalization

Edge length penalization

Corner number penalization
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Surface
extraction Regularization term

Area penalization

Edge length penalization

Corner number penalization
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Surface
extraction Edge term

EdgeNo edge

1-1-1+1=0 1-0-1+1=1 1-0-0+1=21-0-1+0=0



89

Surface
extraction Corner term
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Surface
extraction Energy minimization

● Objective

● Very challenging for Markov Random Field
– Edges: 4th order potential

– Corners: 8th order potential

– Tree-reweighted Belief Propagation: extremely slow

– Lazy Flipper: local minimum, extremely suboptimal
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Surface
extraction Linear relaxation

● Reformulation and relaxation

● This is a standard Linear Program 
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Surface
extraction Results: meeting room

Area term onlyChauve et al.
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Surface
extraction Results: meeting room

Corner term onlyEdge term only

Area term onlyChauve et al.
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Surface
extraction Results: meeting room

Edge term only Corner term only
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Surface
extraction Results: meeting room

Corner only Edge + corner
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Surface
extraction Results: facade
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Surface
extraction Conclusion

● A method for piecewise 
planar surface reconstruction

● Compared to Chauve et al.
– handling of anisotropy

– better surface hypotheses in 
hidden areas

– better regularization on edge 
length and corner number

● Limits and perspectives
– scaling to entire buildings

– need for regularity discovery
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Pipeline
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Surface Digital model

Global semantic information
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Semantic
enrichment Building semantization

● Input: surface + 
semantic priors

● Output:
semantized surface Surface Digital model

Method:
– Bottom-up

– Based on grammars
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Semantic
enrichment Grammars

Sentence

Subject Verb Complement

NounAdjective

The super computer rules Discovery One 

Building

Facade Roof

Window WallArticle

Facade

Expression of hierarchical decompositions
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Semantic
enrichment Constrained attribute grammars

Sentence

Subject Verb Complement

NounAdjective

The super computer rules Discovery One 

Building

Facade Roof

Window WallArticle

Facade

Agreement (singular)

adj

Expression of complex relations
between elements
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Semantic
enrichment Stairway grammar

Stairway

Polygon

Polygon
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Semantic
enrichment Basic rule

Tread t → Polygon p

Riser r → Polygon p

Step s → Tread t, Riser r

riser

tread
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Semantic
enrichment Basic rule

Tread t → Polygon p

Riser r → Polygon p

Step s → Tread t, Riser r

Riser ?

Tread ?

riser

tread
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Semantic
enrichment Conditional rule

Tread t → Polygon p ( horizontal(p), p.length < 2 )

Riser r → Polygon p ( vertical(p), 0.05 < p.width < 0.25 )

Step s → Tread t, Riser r ( edgeAdj(t,r), above(t,r) )

Step
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Semantic
enrichment Collections

Tread t → Polygon p ( horizontal(p), p.length < 2 )

Riser r → Polygon p ( vertical(p), 0.05 < p.width < 0.25 )

Step s → Tread t, Riser r ( edgeAdj(t,r), above(t,r) )

Stairway w → sequence(Step s, edgeAdj) ms

Stairway
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Semantic
enrichment Combinatorial Explosion 

● Enumerating collections may lead to 
combinatorial explosion 
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Semantic
enrichment Combinatorial Explosion 

● Enumerating collections may lead to 
combinatorial explosion 

Total: 4 + 3 + 2 + 1 = 10 possible sequences
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Semantic
enrichment Maximal collections

Stairway

In practice, useful = 
largest collection:

Maximal operators 
(maxseq, maxcycle,...)

– fast computation

– low number of instances

Tread t → Polygon p ( horizontal(p), p.length < 2 )

Riser r → Polygon p ( vertical(p), 0.05 < p.width < 0.25 )

Step s → Tread t, Riser r ( edgeAdj(t,r), above(t,r) )

Stairway w → maxseq(Step s, edgeAdj) ms
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Semantic
enrichment Results

● Two grammars
– Facade

– Stairway

● Experiments
– synthetic data: CAD models, simulated laser scans

– real data: laser scans, photogrammetric data
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Semantic
enrichment CAD Models

Triangle soup
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Semantic
enrichment CAD Models

Triangle soup Polygons
Semantized

model

Semantized
model

+ texture
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Semantic
enrichment Real laser scan: stairs
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Semantic
enrichment Conclusion

Grammar-based building semantization method
– pure bottom-up parsing

– combinatorial explosion containment

– grammars easy to design

– grammars maintainable by non computer scientist

Limits and perspectives
– need of flexibility (missing elements, merged 

geometries)

– learning of rule parameters 
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Conclusion

Surface
extraction

Normal
estimation

Primitive
detection

Surface
semantization

● Pipeline for surface 
reconstruction and 
semantization from
point cloud

● A step towards automatic 
BIM reconstruction
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General perspectives

Surface
extraction

Normal
estimation

Primitive
detection

Surface
semantization

● Arbitrary order
– surface useful for 

semantization

semantics useful for 
surface reconstruction

Simultaneous or loop 
over semantics and 
surface extraction

Dealing with volumes
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● Arbitrary order
– surface useful for 

semantization

– semantics useful for 
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Simultaneous or loop 
over semantics and 
surface extraction

Dealing with volumes Surface
extraction

Point
semantization
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General perspectives

Normal
estimation

Primitive
detection

● Arbitrary order
– surface useful for 

semantization

– semantics useful for 
surface reconstruction

● Simultaneous or 
iterated semantics and 
surface extraction

Dealing with volumes

Surface
extraction

and
semantization
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General perspectives

● Arbitrary order
– surface useful for 

semantization

– semantics useful for 
surface reconstruction

● Simultaneous or 
iterated semantics and 
surface extraction

● Dealing with volumes
http://www.bimvision.eu/
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Thank you for your attention

Fast and Robust Normal estimation for Point Clouds with Sharp Features
with Renaud Marlet
SGP 2012
Computer Graphics Forum

Semantizing Complex 3D Scenes using Constrained Attribute Grammars
with Simon Houiller, Renaud Marlet and Olivier Tournaire
SGP 2013
Computer Graphics Forum

Statistical criteria for primitive merging
with Renaud Marlet
ICPR 2014

Piecewise-Planar 3D Reconstruction with Edge and Corner Regularization
with Martin de La Gorce and Renaud Marlet
SGP 2014
Computer Graphics Forum
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