Automatic reconstruction of Building Information Models

Alexandre Boulch

December 19th, 2014

Defense committee:

Dr. Pierre ALLIEZ Dr. Bruno LEVY Dr. Reinhard KLEIN Dr. Jan BOEHM Dr. Jean-Philippe PONS Dr. Renaud MARLET Dr. Martin DE LA GORCE

The BIM is a digital representation of a building

Building Information Modeling (BIM): Benefits, Risks and Challenges Salman Azhar et al. (2008) Model interoperability in building information modeling Steel, James et al. (2010)

Renovation of old buildings

- Huge market (e.g., improvement of thermal performance)
- No digital model
- Wrong or inexisting blueprints

http://www.agrconstruction.fr/

Data

Photogrammetry

Data

- Photogrammetry
- Depth sensors

Data

- Photogrammetry
- Depth sensors
- Lasers

Reconstruct and semantize surfaces

Pipeline Point cloud Structure and information enrichment Roof 1 Digital model Wall 2 Wall 1

Introduction

Local estimation of the surface orientation

- Local estimation of the surface orientation
- Robustness to
 - noise

- Local estimation of the surface orientation
- Robustness to
 - noise
 - outliers

- Local estimation of the surface orientation
- Robustness to
 - noise
 - outliers
 - sharp edges

- Local estimation of the surface orientation
- Robustness to
 - noise
 - outliers
 - sharp edges
 - anisotropy

- Local estimation of the surface orientation
- Robustness to
 - noise
 - outliers
 - sharp edges
 - anisotropy
- Speed

Previous work

Regression

Normal

estimation

- Planes: Hoppe et al. Surface reconstruction from unorganized points. SIGGRAPH, 1992.
- Jets: Cazals & Pouget. Estimating Differential Quantities using Polynomial fitting of Osculating Jets. Symposium on Geometry Processing, 2003.
- Voronoï diagrams
 - **Dey and Goswami**. *Provable surface reconstruction from noisy samples*. Comput. Geometry, 2006.
- RANSAC
 - Li et al. Robust normal estimation for point clouds with sharp features. Computers & Graphics, 2010.

Previous work

	Regression Planes	Regression Jets	Voronoï diagrams	RANSAC
Noise	X	X		X
Outliers				X
Sharp features			X	X
Anisotropy			X	
Speed	X	X	X	

Randomized Hough transform

Generate hypotheses: pick triplets of points

Randomized Hough transform

Generate hypotheses: pick triplets of points

Normal Randomized Hough transform estimation Generate hypotheses: Vote in a spherical pick triplets of points accumulator Space change Select the most probable bin

Robust lower bound

- Filled accumulator of *M* bins: empirical approximation of a probability distribution
- Estimate the quality of the approximation.
 - T^* , minimum number of triplets to pick such that :

$$\mathbb{P}(\max_{m \in \{1,\dots,M\}} |\hat{p}_m - p_m| < \delta) \ge \alpha$$

 δ : deviation tolerance α : confidence level

Normal

estimation

Robust lower bound

- Filled accumulator of *M* bins: empirical approximation of a probability distribution
- Estimate the quality of the approximation.

 T^* , minimum number of triplets to pick such that :

$$\mathbb{P}(\max_{m \in \{1,\dots,M\}} |\hat{p}_m - p_m| < \delta) \ge \alpha$$

• From Hoeffding inequality:

Normal

estimation

$$T^* = \left\lceil \frac{1}{2\delta^2} \log\left(\frac{2M}{1-\alpha}\right) \right\rceil$$
Normal estimation

Results

Cazal & Pouget (2003)

Speed and accuracy

 Same complexity

Normal

estimation

As accurate • and faster than [Li et al. 2010]

Note: [Dey & Goswany 2006] does not appear on the graphic, because the method is not robust to noise

Normal estimation

Visuals results: laser scans

Normal estimation

Visual results: photogrammetric data

Conclusion

- Robust normal estimator based on Hough Transform
 - accurate
 - robust to noise, outliers, sharp edges and anisotropy
 - fast
- Limitations
 - smooth normals on wide angles

Pipeline

Pipeline

Primitive fusion Practical example

Over-segmentation

Primitive fusion Practical example

Over-segmentation

Primitive fusion Practical example

Over-segmentation

Existing methods

Tolerance on parameters

Primitive

fusion

- 3 for a plane (2 for orientation, 1 for distance)
- 4 for a sphere (3 for position, 1 for radius)
- A contrario criterion only for planes in depth maps [Bughin, E. 2010.]

Primitive fusion

Existing methods

- Tolerance on parameters :
 - 3 for a plane (2 for orientation, 1 for distance)
 - 4 for a sphere (3 for position, 1 for radius)
- A contrario criterion only for planes in depth maps [Bughin, E. 2010.]

Our method:

One single indicator: distribution of distances to primitive

Primitive fusion

Criterion for fusion

- Two surfaces \mathcal{S}_1 and \mathcal{S}_2 , associated with point sets P_1 and P_2
- Distance function from point to primitives
- Define two sets:
- $X = \{ d(p_1, \mathcal{S}_1), \ p_1 \in P_1 \} \cup \{ d(p_2, \mathcal{S}_2), \ p_2 \in P_2 \}$ $Y = \{ d(p_1, \mathcal{S}_2), \ p_1 \in P_1 \} \cup \{ d(p_2, \mathcal{S}_1), \ p_2 \in P_2 \}$
- If $S_1 = S_2$ then X = Y
- Statistical tests
 - Mann-Whitney
 - Kolmogorov-Smirnov

Primitive fusion

Results

Very small difference in the distributions
 rejection

- Very small difference in the distributions
 rejection
- No user control on acceptance

Smooth distributions to ensure a controlled fusion

Increasing the level of smoothing

Increasing the level of smoothing

Increasing the level of smoothing

Increasing the level of smoothing

Smoothing level: 0.03

Primitive fusion

Conclusion

- Criterion for primitives fusion
 - robustness to noise
 - support for any primitive type (plane, cylinder...)
 - intuitive user control on merging
- Limits
 - empirical relation between noise and fusion distance

Pipeline

Pipeline

Objective

Automatic surface reconstruction from laser scan

- watertight without self intersection
- piecewise planar
- extended plausibly in hidden region

Objective

Automatic surface reconstruction from laser scan

- watertight without self intersection
- piecewise planar
- extended plausibly in hidden region with support for data anisotropy

Previous work

- Smooth priors
 - e.g. Poisson reconstruction
- Voxelisation
 - biased, expensive
- Delaunay tetrahedralization
 - visible regions only
- Plane adjacency
 - visible near adjacency
- Manhattan world assumption
 - too restrictive: 3 directions only

Chauve et al.

A.-L. Chauve, P. Labatut, J.P. Pons Robust piecewise-planar 3D reconstruction and completion from large-scale unstructured point data. CVPR 2010

- Plane arrangement
 - Visible planes
 - Hidden plane hypotheses (called ghosts)
- Binary labelization of resulting 3D cell complex (empty or full)
 - Surface minimization, graph-cut optimization
- Advantages
 - watertight and non self-intersecting surfaces
 - preservation of sharp edges
 - extension of primitives far in hidden regions
 - more plausible surfaces thanks to hidden plane hypotheses

Chauve et al. (2)

- Limitations
 - wrong primitive borders with anisotropic point clouds

- Our method
 - determination of borders in laser depth image

Chauve et al. (3)

- Limitations
 - missing plane hypotheses

- Our method
 - generation of parallel ghosts (for thin objects without detected thickness)

Chauve et al. (4)

- Limitations
 - Holes and truncated corners due to area minimization
- Our method
 - Edge length and corner number minimization

Overview of the method

Laser point cloud

Overview of the method

- Laser point cloud
- Primitive extraction

Overview of the method

- Laser point cloud
- Primitive extraction
- Ghost generation

Overview of the method

- Laser point cloud
- Primitive extraction
- Ghost generation
- Volume partition using a plane arrangement

Overview of the method

- Laser point cloud
- Primitive extraction
- Ghost generation
- Volume partition using a plane arrangement
- Binary partition using linear programming

Overview of the method

- Laser point cloud
- Primitive extraction
- Ghost generation
- Volume partition using a plane arrangement
- Binary partition using linear programming
- Surface extraction

Overview of the method

- Laser point cloud
- Primitive extraction
- Ghost generation
- Volume partition using a plane arrangement

Binary partition using linear programming

Surface extraction

Partition

- Partition the volume with a plane arrangement
- Labelization of each cell as empty or occupied

$$\mathbf{x} = (x_1, x_2, \dots, x_N) \in \{0, 1\}^N$$

Energy formulation

• Energy

Surface

extraction

$$E = E_{data} + E_{regul}$$

Data term

Penalizes a surface disagreeing with observations **Regularization term**

Penalizes a complex surface in the hidden areas

 $E_{data} = E_{prim} + E_{vis}$

Surface

Surface

Surface

Surface

Regularization term

Surface

Regularization term

Surface

Edge term

$$E_{edge}(\mathbf{x}) = \sum_{e \in \mathcal{E}} |h_e(\mathbf{x})|$$
$$h_e(x) = x_a - x_b - x_c + x_d$$

Surface Corner term extraction

1

$$E_{corner}(\mathbf{x}) = \sum_{v \in \mathcal{V}} |h_v(\mathbf{x})|$$
$$h_v(x) = x_a - x_b - x_c + x_d - x_e + x_f + x_g - x_h$$

1

Energy minimization

Objective

 $argmin_{\mathbf{x}} E(\mathbf{x})$

- Very challenging for Markov Random Field
 - Edges: 4th order potential
 - Corners: 8th order potential
 - Tree-reweighted Belief Propagation: extremely slow
 - Lazy Flipper: local minimum, extremely suboptimal

Surface Linear relaxation

Reformulation and relaxation

 $min_{x,y} \sum_i w_i y_i$ s.t. $x \in [0,1]^N, \forall i : -y_i \leq H_i \cdot x \leq y_i$

• This is a standard Linear Program

Results: facade

Conclusion

- A method for piecewise planar surface reconstruction
- Compared to Chauve et al.
 - handling of anisotropy

Surface

- better surface hypotheses in hidden areas
- better regularization on edge length and corner number
- Limits and perspectives
 - scaling to entire buildings
 - need for regularity discovery

Pipeline

Pipeline

Building semantization

 Input: surface + semantic priors

Semantic

enrichment

 Output: semantized surface

Method:

- Bottom-up
- Based on grammars

Grammars

Expression of hierarchical decompositions

Constrained attribute grammars

Expression of complex relations between elements

Semantic

enrichment

Basic rule

Riser $r \rightarrow \text{Polygon } p$

Step $s \rightarrow \text{Tread } t$, Riser r

Basic rule

Riser $r \rightarrow \text{Polygon } p$

Step $s \rightarrow \text{Tread } t$, Riser r

Conditional rule

Tread <i>t</i>	\rightarrow Polygon <i>p</i>	(horizontal(<i>p</i>), <i>p</i> .length < 2)
Riser r	\rightarrow Polygon <i>p</i>	(vertical(p), $0.05 < p$.width < 0.25)
Step s	\rightarrow Tread <i>t</i> , Riser <i>r</i>	(edgeAdj(t,r), above(t,r))

Collections

107

Tread <i>t</i>	\rightarrow	Polygon <i>p</i>	(horizontal(<i>p</i>), <i>p</i> .length < 2)
Riser r	\rightarrow	Polygon <i>p</i>	(vertical(<i>p</i>), 0.05 < <i>p</i> .width < 0.25)
Step s	\rightarrow	Tread t, Riser r	(edgeAdj(t,r), above(t,r))
Stairway w	\rightarrow	sequence(Step s, edgeAdj) ms	

Combinatorial Explosion

 Enumerating collections may lead to combinatorial explosion

Combinatorial Explosion

 Enumerating collections may lead to combinatorial explosion

Combinatorial Explosion

 Enumerating collections may lead to combinatorial explosion

Combinatorial Explosion

 Enumerating collections may lead to combinatorial explosion

Total: 4 + 3 + 2 + 1 = 10 possible sequences

Maximal collections

Stairway w	\rightarrow	maxseq(Step s, edgeAdj) ms	
Step s	\rightarrow	Tread t, Riser r	(edgeAdj(t,r), above(t,r))
Riser r	\rightarrow	Polygon <i>p</i>	(vertical(p), $0.05 < p$.width < 0.25)
Tread <i>t</i>	\rightarrow	Polygon <i>p</i>	(horizontal(<i>p</i>), <i>p</i> .length < 2)

In practice, useful = largest collection:

Maximal operators (maxseq, maxcycle,...)

- fast computation
- low number of instances

Results

- Two grammars
 - Facade
 - Stairway

- Experiments
 - synthetic data: CAD models, simulated laser scans
 - real data: laser scans, photogrammetric data

Real laser scan: stairs

Conclusion

Grammar-based building semantization method

- pure bottom-up parsing
- combinatorial explosion containment
- grammars easy to design
- grammars maintainable by non computer scientist
- Limits and perspectives
 - need of flexibility (missing elements, merged geometries)
 - learning of rule parameters

Conclusion

- Pipeline for surface reconstruction and semantization from point cloud
- A step towards automatic BIM reconstruction

- Arbitrary order
 - surface useful for semantization

- Arbitrary order
 - surface useful for semantization
 - semantics useful for surface reconstruction

- Arbitrary order
 - surface useful for semantization
 - semantics useful for surface reconstruction
- Simultaneous or iterated semantics and surface extraction

- Arbitrary order
 - surface useful for semantization
 - semantics useful for surface reconstruction
- Simultaneous or iterated semantics and surface extraction

- Arbitrary order
 - surface useful for semantization
 - semantics useful for surface reconstruction
- Simultaneous or iterated semantics and surface extraction
- Dealing with volumes

http://www.bimvision.eu/

Thank you for your attention

Fast and Robust Normal estimation for Point Clouds with Sharp Features with **Renaud Marlet** SGP 2012 Computer Graphics Forum

Semantizing Complex 3D Scenes using Constrained Attribute Grammars with **Simon Houiller, Renaud Marlet and Olivier Tournaire** SGP 2013 Computer Graphics Forum

Statistical criteria for primitive merging with **Renaud Marlet** ICPR 2014

Piecewise-Planar 3D Reconstruction with Edge and Corner Regularization with **Martin de La Gorce and Renaud Marlet** SGP 2014 Computer Graphics Forum