

Nuages de Points et Modélisation 3D

7 - Machine learning IV

Overview

Machine learning courses

- Surface reconstruction
- Descriptors and machine learning
- Image based processing
- Geometric deep learning
- Convolutional and Transformer based architectures
- Tasks and corresponding architectures

Today

Course overserview

• Tasks

- Classification and segmentation
- Detection from point cloud
- Scene completion
- Generation
- Surface reconstruction
- Self-supervised learning
 - Point cloud only pretraining
 - Distillation
- Domain adaptation
- Open world

Course overserview

• Tasks

- Classification and segmentation
- Detection from point cloud
- Scene completion
- Generation
- Surface reconstruction
- Self-supervised learning
 - Point cloud only pretraining
 - Distillation
- Domain adaptation
- Open world

Next week: QCM + (opening on multiview and rendering)

Classification and semantic segmentation

Detection

I - Tasks

Put oriented boxes around objects of interest

Detection

I - Tasks

Second

Scene completion

I - Tasks

Input: lidar scan

Output: completed voxel scene with semantics

Scene completion

valeo.ai

Generation (e.g. diffusion models)

Generation (e.g. diffusion models)

Generation (e.g. diffusion models)

I - Tasks

Zhou et al. "3d shape generation and completion through point-voxel diffusion." ICCV. 2021.

valeo.ai

Generation (e.g. diffusion models)

Generation (e.g. diffusion models)

valeo.ai

Generation (e.g. diffusion models)

Surface reconstruction

I - Tasks

Occupancy Networks: Learning 3D Reconstruction in Function Space

Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019

Surface reconstruction

Surface reconstruction

II - Self-supervised learning

Supervised learning

Self-supervised learning

Train with annotated data

- Annotations are costly
- Limitation of the database size

Frugal learning

Self-supervised learning

Objective: learning with less annotations

Self-supervision

What? learn useful representations without annotations

Why? better performance when finetuning / data-efficiency

Step 2: finetuning (supervised)

ALSO: Automotive Lidar Self-Supervision by Occupancy Estimation

Context reconstruction vs local reconstruction

Context reconstruction vs local reconstruction

Local reconstruction [POCO head]

- everywhere, from features of neighboring points
- \Rightarrow (too) detailed geometry

Context reconstruction [ALSO head]

- of a 1 meter ball, from each single feature point
⇒ rough geometry, more suited for object recognition

POCO: Point Convolution for Surface Reconstruction, A. Boulch, R. Marlet, CVPR 2022

Context reconstruction vs local reconstruction

Local reconstruction [POCO head]

everywhere, from features of neighboring points
⇒ (too) detailed geometry

Context reconstruction [ALSO head]

- of a 1 meter ball, from each single feature point
⇒ rough geometry, more suited for object recognition

POCO: Point Convolution for Surface Reconstruction, A. Boulch, R. Marlet, CVPR 2022

Supervision

occupancy

valeo.ai

Supervision

Supervision

Self-supervised occupancy - Query point generation

Along lidar lines of sight

Empty queries: from sensor to observed point

Full queries: just behind the point (max distance δ = 0.1 m)

Self-supervision

32

valeo.ai

Downstream tasks

- remove occupancy head
- add a single linear layer
- finetune the whole network

Semantic segmentation - 1% annotated data

ALSO

II - Self-supervision

Contrastive learning

valeo.ai

Contrastive learning

Contrastive learning

Contrastive learning

Contrastive self-supervised learning for point clouds

Contrastive methods

PointContrast

PointContrast

+++ Easy to implement

- - - Contrast in the same object

Contrastive self-supervised learning for point clouds

Contrastive methods

SegContrast / TARL

+++ Efficient thanks to object segmentation (temporal for TARL)

- - - Difficult to set up \rightarrow rely on HDBScan (hyperparameters)

Contrastive self-supervised learning for point clouds

Contrastive methods

BEVContrast

+++ Simple → easy projection in BEV +++ Object separation approximation with BEV cells

BEVContrast

BEVContrast

valeo.ai

Dataset	Method	0.1%		1%		10%		50%		100%	
	No pre-training	21.6	±0.5	35.0	±0.3	57.3	±0.4	69.0	±0.2	71.2	±0.2
	PointContrast [†] [40]	27.1	± 0.5	37.0	± 0.5	58.9	±0.2	69.4	± 0.3	71.1	±0.2
nuScenes	DepthContrast [†] [46]	21.7	±0.3	34.6	± 0.5	57.4	± 0.5	69.2	±0.3	71.2	± 0.2
	ALSO [3]	26.2	± 0.5	37.4	± 0.3	59.0	±0.4	69.8	± 0.2	71.8	± 0.2
	BEVContrast (ours)	26.6	± 0.5	37.9	±0.4	59.0	±0.6	70.5	± 0.2	72.2	±0.1
	No pre-training	30.0	±0.2	46.2	±0.6	57.6	±0.9	61.8	±0.4	62.7	±0.3
SemanticKITTI	PointContrast [‡] [40]	32.4	± 0.5	47.9	± 0.5	59.7	± 0.5	62.7	± 0.3	63.4	± 0.4
	SegContrast [29]	32.3	± 0.3	48.9	± 0.3	58.7	± 0.5	62.1	± 0.4	62.3	± 0.4
	DepthContrast [†] [46]	32.5	± 0.4	49.0	± 0.4	60.3	± 0.5	62.9	± 0.5	63.9	± 0.4
	STSSL [39]	32.0	± 0.4	49.4	± 1.1	60.0	± 0.6	62.9	± 0.7	63.3	± 0.3
	ALSO [3]	35.0	± 0.1	50.0	± 0.4	60.5	± 0.1	63.4	± 0.5	63.6	± 0.5
	TARL [30]	37.9	± 0.4	52.5	± 0.5	61.2	±0.3	63.4	± 0.2	63.7	±0.3
	BEVContrast (ours)	39.7	±0.9	53.8	±1.0	61.4	±0.4	63.4	± 0.6	64.1	±0.4

II - Self-supervision

Distillation

valeo.ai

Sensor setup

Example from nuScenes

Task of interest: point cloud semantic segmentation

valeo.ai

SEAL - Segment any point cloud

2D features

2D features

49

Credit Gilles Puy

III - Domain adaptation

Unsupervised domain adaptation

Target (no annotations) Domain gapDifferent sensorsDifferent locationsDifferent objects⇒ source model performs poorlyAdaptation

Use target data to enhance performances

⇒ prevent collapse

Example - sensor gap

Domain adaptation

(a) captured by a 64-beam LiDAR (b) captured by a 32-beam LiDAR

Complete and label

Domain adaptation

valeo.ai

SALUDA

Domain adaptation

SALUDA

Domain adaptation

III - Open World

valeo.ai

Open vocabulary

Classic benchmarks

- Closed vocabulary setup
- With definition of a **finite set** of classes
- Training of model in **fully-supervised** fashion
 - Requires a lot of annotation

Cityscapes dataset, 30 classes

[road, sidewalk, parking, rail track, person, rider, car, truck, bus, on rails, motorcycle, bicycle, caravan, trailer, building, wall, fence, guard rail, bridge, tunnel, pole, traffic sign, traffic light, vegetation, terrain, sky]

Pascal VOC dataset, 20 classes

[person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa, tv/monitor]

valeo.ai

Open vocabulary

The world is complex

CLIP

- Contrastive learning
 - Contrast positive/negative pairs
- Trained using 400 millions (image / text) pairs extracted from internet
 - o Meta-data
 - Legends

OpenScene

valeo.ai

OpenScene

Peng, Songyou, et al. "Openscene: 3d scene understanding with open vocabularies." CVPR. 2023.

OpenScene

Input 3D Point Cloud

Zero-shot Semantic Segmentation

"soft" - Property

1

"metal" - Material

"kitchen" - Room Type

"sit" - Affordance

"work" - Activity

Link to video

https://pengsongyou.github.io/openscene

Conclusion and practical session

Conclusion

A very short overview of some tasks

- There are many other
- Only few methods were presented, not state-of-the-art anymore

Practical session

Open Vocabulary on point cloud with MaskCLIP